HacDC Spaceblimp 6/Projects/Science Payload: Radiation & FLASH memory
From HacDC Wiki
Science Payload: Radiation & Flash Memory
Introduction: This is an experiment to detect and determine the vulnerability of contemporary consumer Flash memory media (eg SD cards, USB thumbdrives, SSDs, etc) to cosmic rays. This is useful to know whether we can rely on such media for future Spaceblimp payloads and in general whether this media is suitable and reliable for high altitude applications (weather balloon payloads, aircraft, low-earth orbit spacecraft, etc). Cosmic rays are high-energy particles, largely protons with energies 200MeV to 500MeV that bombard the Earth from all directions. 99.99% of the cosmic rays that reach the stratosphere (30km) are absorbed by air before reaching the ground (sea level). The ones that do reach the earth's surface are energetic enough to penetrate electronics, people and buildings largely unnoticed except by the occasional memory glitch or bad pixel in a photo. High-reliability servers use error-correcting memory to deal with errors caused by cosmic rays that might cause errors on cheaper consumer-grade computer systems. Electronics for critical applications like aircraft, spacecraft and even some medical devices must be either specially made as radiation-resistant chips or the systems designed to cope with occasional errors from cosmic rays.
Although the susceptibility of computer memory to cosmic rays has been tested before, technology changes quickly so there is value in repeating these experiments with contemporary technology. The nature, energy and density of cosmic rays is constant but as the components of computer systems are scaled ever further down (following Moore's Law), the smaller components are more likely to have their function disrupted by a cosmic ray hit. At the same time, the larger density of components means an ever smaller fraction of those components will hit by cosmic rays in any given time.
Contemporary