Actions

FLIR Pi HOWTO

From HacDC Wiki

Revision as of 22:37, 6 December 2016 by Ubuntourist (talk | contribs) (Formatting the page)

The space has a FLIR infrared camera which is designed to plug into an Android device. Here's how to set up a Raspberry Pi to handle the camera, from scratch.

An operating system would be a good start

Start by fetching the Raspibian image du jour from:

   https://www.raspberrypi.org/downloads/raspbian/

And, I like checksums. So, copy the checksum too. I go to the trouble of putting the sum in an appropriate file. As of this writing (2016.12.06), the checksum is SHA-1. So, create a file named SHA1SUM with the checksum, two spaces, and then the name of the zip file.

Check the sum with:

   $ sha1sum --check SHA1SUM

It should say "<filename>.zip: OK" if all is well.

Mount an SD card somewhere and see where it's mounted and how much free space is on it with:

   $ df -h

In my case, this is an 8GB SD card at /dev/sdb1

The "dd" program is the standard way to burn an image. I don't like it because to get feedback on the progress of the burn, you have to go through odd somersaults of sending kill SIGs. This is just perverse. Use "ddrescue" instead. Under Ubuntu the package name is "gddrescue" but the command drops the "g".

   $ sudo ddrescue --force -b <blocksize> <source image> <destination device>

Specifically, as of this writing:

   $ sudo ddrescue --force -b 4M 2016-11-25-raspbian-jessie.img /dev/sdb

(Another option is to use "dcfldd" from the package of the same name.)

If you've burned the SD correctly, you should now have two partitions -- a root and a boot.

Eject the SD safely and pop it into a Pi. Boot the Pi, preferably with an Ethernet cable attached.

Use nmap to find the IP address of the Pi. The following pings all of the machines on the local network! (THANKS, Tom!)

   $ nmap 192.168.26.2-255 -sn
   Starting Nmap 7.12 ( https://nmap.org ) at 2016-12-05 21:42 EST
   Nmap scan report for 192.168.26.6
   Host is up (0.0033s latency).
   Nmap scan report for 192.168.26.97
   Host is up (0.038s latency).
   Nmap scan report for 192.168.26.100
   Host is up (0.00023s latency).
   Nmap scan report for 192.168.26.116
   Host is up (0.0015s latency).
   Nmap scan report for 192.168.26.156
   Host is up (0.0055s latency).
   Nmap scan report for 192.168.26.176
   Host is up (0.035s latency).
   Nmap done: 254 IP addresses (6 hosts up) scanned in 2.36 seconds

Configure the Pi and enable SSH. I changed the host name to "flirpi" and the default user (pi) password to "Infra-Red".

   $ sudo apt update
   $ sudo apt full-upgrade
   $ sudo apt install avahi-utils

Get all your SSH key ducks in a row to ease communicating with the wee beastie. In addition to adding public keys to the appropriate

 ~/.ssh/authorized_keys file (and ensuring the permissions on said file are 600), adding the .ssh/config
   Host flirpi.local
     User pi
     ForwardX11 yes
   Host flirpi
     Hostname flirpi.local
     User pi
     ForwardX11 yes

See both the following:

   http://www.penguintutor.com/linux/raspberrypi-headless
   http://www.penguintutor.com/linux/tightvnc

Okay. That was all very special. Now, time to get to why we're here.


Adding FLIR to the mix

We're already at 56% used of the 8GB... Everything up until this point has been a good way to set up any Pi. But now, it's time to add the special sauce to make it talk to the FLIR.

We need git to fetch the Video for Linux loopback source, since the Debian package seems hopelessly borked. To compile that, we need kernel header files. And finally, we need libusb-dev for a header file needed to compile the FLIR source code.

   $ sudo apt install git
   $ sudo apt install raspberrypi-kernel-headers
   $ sudo apt-get install libusb-1.0-0-dev
   $ mkdir -p github/FLIR
   $ cd github/FLIR

Compile and install the Video for Linux loopback driver module:

   $ git clone https://github.com/umlaeute/v4l2loopback
   $ cd v4l2loopback
   $ make
   $ sudo make install

Moment of truth: Compile flir.

   $ cd ~/github/FLIR/

Search the blog at

   http://www.eevblog.com/forum/thermal-imaging/\
   question-about-flir-one-for-android/msg832208/#msg832208

for the source code link (flir8g-mint.c). It's a bit hidden near the bottom of the thread. Drop it in ~/github/FLIR/.

Determine, for certain, where the libusb.h file is to use in the FLIR compilation.

   $ find / -name libusb.h 2>/dev/zero
   /usr/include/libusb-1.0/libusb.h
   $ gcc '-I/usr/include/libusb-1.0'  \
          -o flir flir8g-mint.c -lusb-1.0 -lm
   $ sudo modprobe v4l2loopback video_nr=1,2
   $ sudo ./flir

The console should, after a second or two, start spitting out all sorts of camera data in an ongoing stream, To see the camera data as video:

   $ sudo apt install mplayer
   $ mplayer tv:// -tv driver=v4l2:device=/dev/video1

Finally, since it's easier than figuring out the RIGHT way to do it, add a couple of lines to /etc/rc.local to load the video for Linux loopback module compiled and installed above:

   # Last modified by Ubuntourist <[email protected]> 2016.12.06 (kjc)
   # 2016.12.06 KJC - Load Video for Linux loopback driver module
   modprobe v4l2loopback video_nr=1,2

Also, a ~/.bash_aliases file with:

   # Written by Ubuntourist <[email protected]> 2016.12.06
   alias heatwatch='mplayer tv:// -tv driver=v4l2:device=/dev/video1'

so that you can type "heatwatch" instead of remembering all the parameters for the mplayer command. (Remember to start flir first.)

All told, 59% of the SD card's root partition (4.0 GB out of 7.1 GB) is being occupied at the moment.