
Your very own 
GP Interpreter

Natural language and Artificial Intelligence Group



Genetic Algorithms

• Uses principals of Darwinian evolution to 
breed good individuals

• Mutates individuals to create randomness in 
the population

• Over time these individuals tend toward the 
best

• Hopefully the GA will find a sufficient 
solution to the given problem



Remember 
Two Weeks Ago

• We talked about GAs

• We used GAs to evolve the coefficients of a 
parabola

• We used a data sample to figure out the 
error of the individual



Goal Parabola

3.14159·X + 1.61803·X2



GA Individuals

3.14159·X + 1.61803·X2



Genetic Programming

• Uses the same principals of Darwinian 
evolution as Genetic Algorithms

• Evolves programs not parameters

• This can include control structures such as 
loops, conditionals and even recursion 
(if you do it right)



Genetic Programming

• Individuals consist of functions, literals and 
variables

• Mutations change functions into different 
functions and literals and variables into 
different literals or variables

• Crossover copies part of a program into it’s 
child 



GP Individual

3.14159·X + 1.61803·X2



Remember 
One Week Ago

• Todd evolved programs to create digital 
imagery

• He cited a nice paper by Karl Sims on 
“Artificial Evolution for Computer Graphics”

• Todd and Karl used trees to represent 
programs



Tree Based GP

• Tree GP is the oldest tradition of Genetic 
Programming

• Started by John Koza in 1985

• Used Lisp S-Expressions to represent a 
program



Why Lisp?

• This allowed for the generation of random 
expressions with little worry of syntax 
errors

• S-Expressions can be manipulated as lists 
making programming mutation and 
crossover easier

Lisp is almost always syntactically valid



GP Tree Individual

(+ (· π X) (· φ (·X X))



Tree Parabola

X

+

·

π φ

·

·

X X



Error Cases

• Even with the almost always syntactically 
validness of the S-Expression representation 
there are still error cases



Error Case 
Compensation

1. Any node can mutate into a new random expression. 
This allows for large changes, and usually results in a 
fairly significant alteration of the phenotype.

2. If the node is a scalar value, it can be adjusted by the 
addition of some random amount.

3. If the node is a vector, it can be adjusted by adding 
random amounts to each element.

4. If the node is a function, it can mutate into a different 
function. For example (abs X) might become (cos X). 
If this mutation occurs, the arguments of the function 
are also adjusted if necessary to the correct number 
and types.

5. An expression can become the argument to a new 
random function. Other arguments are generated at 
random if necessary. For example X might become (* 
X .3).

6. An argument to a function can jump out and become 
the new value for that node. For example (* X .3) 
might become X. This is the inverse of the previous 
type of mutation.

7. Finally, a node can become a copy of another node 
from the parent expression. For example (+ (abs X) 
(* Y .6)) might become (+ (abs (* Y .6)) (* Y .6)). 
This causes effects similar to those caused by mating 
an expression with itself. It allows for sub-
expressions to duplicate themselves within the 
overall expression.

Crossovers can be performed by sequentially copying genes from one parent, but with some 
frequency the source genotype is switched to the other parent. This causes adjacent genes to be 
more likely to stick together than genes at opposite ends of the sequence. Each pair of genes has a 
linkage probability depending on their distance from each other.

Each gene can be independently copied from one parent or the other with equal probability. If the 
parent genes each correspond to a point in N-dimensional genetic space, then the genes of the 
possible children using this method correspond to the 2N corners of the N-dimensional rectangular 
solid connecting the two parent points. This method is the most commonly used in this work and 
is demonstrated in figure 2. Two parent plant structures are shown in the upper left boxes, and the 
remaining forms are their children.

Each gene can receive a random percentage, p, of one parent's genes, and a 1 - p percentage of the 
other parent's genes. If the percentage is the same for each gene, linear interpolation between the 
parent genotypes results, and the children will fall randomly on the line between the N-
dimensional points of the parents. If evenly spaced samples along this line were generated, a 
genetic dissolve could be made that would cause a smooth transition between the parent 
phenotypes if the changing parameters had continuous effects on the phenotypes. This is an 
example of utilizing the underlying genetic representation for specific manipulation of the results. 
Interpolation could also be performed with three parents to create children that fall on a triangular 
region of a plane in the N-dimensional genetic space.

Finally, each new gene can receive a random value between the two parent values of that gene. 
This is like the interpolation scheme above, except each gene is independently interpolated 
between the parent genes. This method results in possible children anywhere within the N-
dimensional rectangular solid connecting the parent points.



Error Cases

• Most error cases stem from two problems

• Arity - Function specify how many 
arguments they take

• Data Types - Functions specify what data 
types they take

• Crossover and Mutation must be aware of 
the error cases



Our Goal

Make an interpreter for a language that 
is always syntactically valid

Time to bust out your laptop



Goals

• Make functions not picky about arity

• Make functions not picky about data types



Our Representation

• Based on the PushGP programming language 

• Stack based representation

• Reverse Polish Notation to represent 
programs

(Think Fourth on crack)



Reverse Polish Notation

3 4 +



Reverse Polish Notation

3 4 +

3



Reverse Polish Notation

3 4 +

3

4



Reverse Polish Notation

3 4 +

3

4



Reverse Polish Notation

7



Arity Error

3 4 +

3



Arity Error

3 4 +

3



Arity Error

3

It NOOPd.



Data Error

‘Cat’ 4 +

Int String



Data Error

‘Cat’ 4 +

Int String

Cat



Data Error

‘Cat’ 4 +

Int String

Cat4



Data Error

‘Cat’ 4 +

Int String

Cat4



Data Error

Int String

Cat4

It NOOPd.



What Does This Give Us?

• The ability to randomly create lists of 
functions and literals without worry

• No more syntactic errors

• No more weird typing systems

Lets build it!



Challenges
• Use hash tables and function literals to make 

it nice and general

• Implement ATOI and toString functions

• Implement an Vector stack and vector 
multiplication and scalar multiplication

• Implement conditionals 
(Hint: Need a boolean stack)

• Implement while loops
(Hint: Put your program on a stack)


