
Dimensions, Distance
and Optimization

Natural language and ARtificial intelligence Group

Warning

This is meant to be helpful, fun and a bit silly.
This is not meant to make you feel patronized.

Don’t take it like that.

Dimensions,
Not what you think

Dimension of a space is the minimum
number of coordinates needed to

describe a point in that space.
“ ”

0-D

2
Dimensionless number, a number without a parent space

Famous example: Reynolds Number

1-D

21 3

Line, a space that takes 1 coordinate to define a point

2-D

2,21 3

1

3

Plane, a space that takes 2 coordinates to define a point

3-D

2,2,2
1 3

1

3
1

3

Volume, a space that takes 3 coordinates to define a point

4-D

THE 4TH DIMENSION IS NOT TIME
It is the dimension after 3 before 5

Spaces larger than 3 dimensions are generally referred to as
“Hyper-Volume” or “N-Dimensional Space” or “N-Space”

Visualizing 4-D

Visualizing N-D

• Last graph we had was plotting a space using
(x, y, z, color)

• We could use (x, y, z, r) for 4-D

• (x, y, z, r, g) for 5-D

• (x, y, z, r, g, b) for 6-D

• Even (x, y, z, r, g, b, a) for 7-D

• Beyond that you need to be creative

Shapes of Spaces

• There are many different shapes of space

• These spaces can be enumerated by fucking
with Euclid’s Fifth Postulate

“If a line bisects another line at an
angle less than 90 degrees the

lines will intersect at some point”

Various Space Shapes

All of these lines are parallel (even if they don’t look it)

Assumptions for NARG

• Assume that all space is always Euclidean
(It’s hard to play in spaces other than
Euclidean, so we won’t)

• Euclidean Distance means we are taking the
distance between two points on a space that
has Euclidean shape
(i.e. Euclid's 5th Postulate holds true)

Distance Metrics

• Distance metrics are one of the best ways of
measuring similarity

• Similarity is good to know for most AI and
ML applications

• Optimization Algorithms

• Reinforcement Learning

• Etc.

My Favorite Distances

• Hamming Distance - Number of swaps

• Euclidean Distance - Normal distance

• Manhattan Distance - Number of “blocks”

Hamming Distance

Kitten Kitteh
Hamming Distance: 1

11101 10011
Hamming Distance: 3

The number of “swaps” to get from one thing to the target

Euclidean Distance

1 8

Euclidean Distance: 7

Distance between two points (generalizable to n-space)

Manhattan Distance

Distance between two points in city blocks
(also generalizable to n-space)

Not the
green one

Problem Spaces
with Examples

• Our dataset contains the following features:
Eye color, Hair color, Gender, Height, Weight

• Since we have 5 features our space is 5-D

• A problem space is the set containing all
possible combinations of these features

• A feature vector is a single set of features,
i.e. [Blue, Blonde, Woman, Average, Thick]

Fitness Landscapes

• Fitness landscapes are also known as “Error
Spaces”

• Add N dimensions to the feature vector to
express the amount of error that feature
vector has

• The slopes on a fitness landscape is what
gradient searches use to find the maxima

Optimization Algorithms

• Optimization algorithms try and find some
optimal configuration of a feature vector

• An optimal feature vector depends on the
application, examples include:

• City order in Traveling Salesman Problems

• Neural Net topology

• My ideal date given a pool of applicants

Particle Swarm
Optimization

A More Mundane Use
of PSO Algorithms

• We want to find the feature vector (5, 8) in
our search space

• Fitness function is determined by the
Euclidean Distance from one particle to the
target

PSO Algorithm
Overview

• Initalize the particles

• Set starting location, velocity and fitness

• While stop criteria hasn’t been met

• Check each particles fitness saving the
best ever and the best at this time

• Flock particles toward the best at this
time and the best ever

PSO Initalization
function init_particles(num, dim, rand)
 local particles = {}
 for i=1, num do
 local particle = {}
 particle.p = {}
 particle.v = {}
 for j=1, dim do
 if rand then
 tinsert(particle.p, random())
 tinsert(particle.v, random())
 else
 tinsert(particle.p, 0)
 tinsert(particle.v, 0)
 end
 end
 particle.f = 999999
 tinsert(particles, particle)
 end
 return particles
end

PSO Runtime Loop

function run_pso (param, fitness_func)

 local particles = init_particles(num, dim, random)

 local pbest = particles[1]
 local gbest = particles[1]

 while iterations > 0 and pbest.f > success do
 pbest, gbest = calc_fitness(particles, fitness_func, pbest)
 update_particles(particles, pbest, gbest, pphi, gphi)
 print_particles(particles)
 iterations = iterations - 1
 end

 return pbest
end

PSO Calc Fitness
function calc_fitness (particles, fitness_func, pbest)
 local gbest = particles[1]

 for i=1, getn(particles) do
 particles[i].f = fitness_func(particles[i])

 if particles[i].f < pbest.f then
 pbest = {
 p = {},
 v = {},
 }
 for j=1, getn(particles[i].p) do
 tinsert(pbest.p, particles[i].p[j])
 tinsert(pbest.v, particles[i].v[j])
 end
 pbest.f = particles[i].f
 end

 if particles[i].f < gbest.f then
 gbest = particles[i]
 end
 end

 return pbest, gbest
end

PSO Update Particle

function update_particles (particles, pbest, gbest, pphi, gphi)
 for i=1, getn(particles) do
 particles[i].v =
 update_velocity(particles[i], pbest, gbest, pphi, gphi)
 particles[i].p =
 update_position(particles[i])
 end
end

PSO Update
Position and Velocity

function update_position (particle)
 local position = {}
 for i=1, getn(particle.p) do
 tinsert(position, particle.p[i] + particle.v[i])
 end
 return position
end

function update_velocity (particle, pbest, gbest, pphi, gphi)
 local velocity = {}
 for i=1, getn(particle.v) do
 local prand = pphi*random()
 local grand = gphi*random()
 local pdiff = pbest.p[i] - particle.p[i]
 local gdiff = gbest.p[i] - particle.p[i]
 local vel = particle.v[i] + (prand * pdiff) + (grand * gdiff)
 tinsert(velocity, vel)
 end
 return velocity
end

PSO Fitness Function

fitness_func = function (particle)
 local point = {5, 8}
 local fitness = 0.0
 for i=1, getn(point) do
 fitness = fitness + (point[i] - particle.p[i])^2
 end
 return sqrt(fitness)
end

Note the n-space flair

PSO Problem Space

PSO Fitness Landscape

PSO Results

• The graphs will show the positions of 5
particles trying to find the feature vector:
(5, 8)

• Last graph will have the best particle ever
found

• Note particles search the problem space to
find the maxima (in this case point (5, 8))

file://localhost/Users/bbarr/Desktop/problemSpace.gcx
file://localhost/Users/bbarr/Desktop/problemSpace.gcx
file://localhost/Users/bbarr/Desktop/problemSpace.gcx

85 Iterations Later...

PSO and NN:
Stochastic Training

• Change the vector of numbers to represent
the weights of all of the connections in a
neural network

• Change the fitness function to how well the
net performs on training data

• Use Hamming Distance to calculate the
distance from actual to target outputs

Questions?

?

