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VVarning

This is meant to be helpful, fun and a bit silly.
This is not meant to make you feel patronized.
Don’t take it like that.



Dimensions,
Not what you think

€ € Dimension of a space is the minimum 9 9
number of coordinates needed to
describe a point in that space.



Dimensionless number, a number without a parent space
Famous example: Reynolds Number



1-D

Line, a space that takes | coordinate to define a point
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Plane, a space that takes 2 coordinates to define a point



Volume, a space that takes 3 coordinates to define a point



4.D

THE 4TH DIMENSION IS NOT TIME

It is the dimension after 3 before 5

Spaces larger than 3 dimensions are generally referred to as
“Hyper-Volume” or “N-Dimensional Space” or “N-Space”
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Visualizing 4-D

4D data (3D Heat Map)
Independent value color-mapped onto 3D surface

4 data columns x/y/z/color
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Visualizing N-D

Last graph we had was plotting a space using
(X, Y, Z, color)

We could use (x,Y,z,r) for 4-D
(X, ¥,z,1,8) for 5-D

(X, ¥,z 1,8 b) for 6-D

Even (x,y,z,1,8,b,a) for 7-D

Beyond that you need to be creative



Shapes of Spaces

® There are many different shapes of space

® These spaces can be enumerated by fucking
with Euclid’s Fifth Postulate

“If a line bisects another line at an
angle less than 90 degrees the
lines will intersect at some point”



Various Space Shapes
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All of these lines are parallel (even if they don’t look it)



Assumptions for NARG

® Assume that all space is always Euclidean
(It’s hard to play in spaces other than
Euclidean, so we won't)

® Fuclidean Distance means we are taking the
distance between two points on a space that
has Euclidean shape
(i.e. Euclid's 5th Postulate holds true)



Distance Metrics

® Distance metrics are one of the best ways of
measuring similarity

® Similarity is good to know for most Al and
ML applications

® Optimization Algorithms
® Reinforcement Learning

® Etc.



My Favorite Distances

® Hamming Distance - Number of swaps
® Euclidean Distance - Normal distance

® Manhattan Distance - Number of “blocks”



Hamming Distance

Kitten —> Kitteh

Hamming Distance: |

11101 —> 10011

Hamming Distance: 3

The number of “swaps” to get from one thing to the target



Euclidean Distance
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Euclidean Distance: /7

Distance between two points (generalizable to n-space)



Manhattan Distance

Not the
green one

Distance between two points in city blocks
(also generalizable to n-space)



Problem Spaces
with Examples

Our dataset contains the following features:
Eye color, Hair color, Gender, Height, Weight

Since we have 5 features our space is 5-D

A problem space is the set containing all
possible combinations of these features

A feature vector is a single set of features,
i.e. [Blue, Blonde,Woman, Average, Thick]



Fitness Landscapes

® Fitness landscapes are also known as “Error
Spaces”

® Add N dimensions to the feature vector to
express the amount of error that feature

vector has

® The slopes on a fitness landscape is what
gradient searches use to find the maxima



Optimization Algorithms

® Optimization algorithms try and find some
optimal configuration of a feature vector

® An optimal feature vector depends on the
application, examples include:

e City order in Traveling Salesman Problems
® Neural Net topology

® My ideal date given a pool of applicants



Particle Swarm
Optimization




A More Mundane Use
of PSO Algorithms

® We want to find the feature vector (5, 8) in
our search space

® Fitness function is determined by the
Euclidean Distance from one particle to the
target



PSO Algorithm
Overview

® |nitalize the particles
® Set starting location, velocity and fitness
® While stop criteria hasn’t been met

® Check each particles fitness saving the
best ever and the best at this time

® Flock particles toward the best at this
time and the best ever



PSO Initalization

function init_particles(num, dim, rand)
local particles = {}
for 1=1, num do
local particle = {}
particle.p = {}
particle.v = {}
for j=1, dim do
1f rand then

(particle.p, )
(particle.v, )
else
(particle.p, 0)
(particle.v, 0)
end

end
particle.f = 999999
(particles, particle)
end
return particles
end



PSO Runtime Loop

function run_pso (param, fitness_func)

local particles = init_particles(num, dim, )

local pbest
local gbest

particles[1]
particles[1]

while iterations > 0 and pbest.f > success do
pbest, gbest = calc_fitness(particles, fitness_func, pbest)
update_particles(particles, pbest, gbest, pphi, gphi)
print_particles(particles)
iterations = iterations - 1

end

return pbest
end



PSO Calc Fitness

function calc_fitness (particles, fitness_func, pbest)
local gbest = particles[1]

for 1=1, (particles) do
particles[i].f = fitness_func(particles[i])

if particles[i].f < pbest.f then

pbest = {
p = {},
v = {},
}
for j=1, (particles[i].p) do
(pbest.p, particles[i].p[jl)
(pbest.v, particles[i].v[j])
end

pbest.f = particles[i].f
end

if particles[i].f < gbest.f then
gbest = particles[i]
end
end

return pbest, gbest
end



PSO Update Particle

function update_particles (particles, pbest, gbest, pphi, gphi)
for 1=1, (particles) do
particles[i].v =
update_velocity(particles[i], pbest, gbest, pphi, gphi)
particles[i].p =
update_position(particles[i])
end
end



PSO Update
Position and Velocity

function update_position (particle)
local position = {}
for i=1, (particle.p) do
(position, particle.p[i] + particle.v[i])
end
return position
end

function update_velocity (particle, pbest, gbest, pphi, gphi)
local velocity = {}

for 1i=1, (particle.v) do
local prand = pphi* )
local grand = gphi* )

local pdiff = pbest.p[i] - particle.p[i]

local gdiff = gbest.p[1i] - particle.p[1i]

local vel = particle.v[i] + (prand * pdiff) + (grand * gdiff)
(velocity, vel)

end
return velocity
end



PSO Fitness Function

fitness_func = function (particle)
local point = {5, 8}
local fitness = 0.0

for 1i=1, (point) do

fitness = fitness + (point[i] - particle.p[i])A2
end
return (fitness)

end

Note the n-space flair



PSO Problem Space




PSO Fitness Landscape




PSO Results

® The graphs will show the positions of 5
particles trying to find the feature vector:

(>, 8)

® |[ast graph will have the best particle ever
found

® Note particles search the problem space to
find the maxima (in this case point (5, 8))
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file://localhost/Users/bbarr/Desktop/problemSpace.gcx
file://localhost/Users/bbarr/Desktop/problemSpace.gcx
file://localhost/Users/bbarr/Desktop/problemSpace.gcx
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85 Iterations Later...
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PSO and NN:
Stochastic Training

Change the vector of numbers to represent
the weights of all of the connections in a
neural network

Change the fitness function to how well the
net performs on training data

Use Hamming Distance to calculate the
distance from actual to target outputs



Questions?

?



