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Warning

This is meant to be helpful, fun and a bit silly.
This is not meant to make you feel patronized. 

Don’t take it like that.



Dimensions,
Not what you think

Dimension of a space is the minimum 
number of coordinates needed to 

describe a point in that space.
“ ”



0-D

2
Dimensionless number, a number without a parent space

Famous example: Reynolds Number



1-D
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Line,  a space that takes 1 coordinate to define a point
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Plane, a space that takes 2 coordinates to define a point 



3-D

2,2,2
1 3

1

3
1

3

Volume, a space that takes 3 coordinates to define a point



4-D

THE 4TH DIMENSION IS NOT TIME
It is the dimension after 3 before 5

Spaces larger than 3 dimensions are generally referred to as 
“Hyper-Volume” or “N-Dimensional Space” or “N-Space”



Visualizing 4-D



Visualizing N-D

• Last graph we had was plotting a space using 
(x, y, z, color)

• We could use (x, y, z, r) for 4-D

• (x, y, z, r, g) for 5-D

• (x, y, z, r, g, b) for 6-D

• Even (x, y, z, r, g, b, a) for 7-D

• Beyond that you need to be creative



Shapes of Spaces

• There are many different shapes of space

• These spaces can be enumerated by fucking 
with Euclid’s Fifth Postulate

“If a line bisects another line at an 
angle less than 90 degrees the 

lines will intersect at some point”



Various Space Shapes

All of these lines are parallel (even if they don’t look it)



Assumptions for NARG

• Assume that all space is always Euclidean
(It’s hard to play in spaces other than 
Euclidean, so we won’t)

• Euclidean Distance means we are taking the 
distance between two points on a space that 
has Euclidean shape 
(i.e. Euclid's 5th Postulate holds true)



Distance Metrics

• Distance metrics are one of the best ways of 
measuring similarity

• Similarity is good to know for most AI and 
ML applications

• Optimization Algorithms

• Reinforcement Learning

• Etc.



My Favorite Distances

• Hamming Distance - Number of swaps

• Euclidean Distance - Normal distance

• Manhattan Distance - Number of “blocks”



Hamming Distance

Kitten Kitteh
Hamming Distance: 1

11101 10011
Hamming Distance: 3

The number of “swaps” to get from one thing to the target



Euclidean Distance

1 8

Euclidean Distance: 7

Distance between two points (generalizable to n-space)



Manhattan Distance

Distance between two points in city blocks 
(also generalizable to n-space)

Not the 
green one



Problem Spaces 
with Examples

• Our dataset contains the following features:
Eye color, Hair color, Gender, Height, Weight

• Since we have 5 features our space is 5-D

• A problem space is the set containing all 
possible combinations of these features

• A feature vector is a single set of features, 
i.e. [Blue, Blonde, Woman, Average, Thick]



Fitness Landscapes

• Fitness landscapes are also known as “Error 
Spaces”

• Add N dimensions to the feature vector to 
express the amount of error that feature 
vector has

• The slopes on a fitness landscape is what 
gradient searches use to find the maxima



Optimization Algorithms

• Optimization algorithms try and find some 
optimal configuration of a feature vector

• An optimal feature vector depends on the 
application, examples include:

• City order in Traveling Salesman Problems

• Neural Net topology

• My ideal date given a pool of applicants



Particle Swarm 
Optimization



A More Mundane Use 
of PSO Algorithms

• We want to find the feature vector (5, 8) in 
our search space

• Fitness function is determined by the 
Euclidean Distance from one particle to the 
target



PSO Algorithm 
Overview

• Initalize the particles

• Set starting location, velocity and fitness

• While stop criteria hasn’t been met

• Check each particles fitness saving the 
best ever and the best at this time

• Flock particles toward the best at this 
time and the best ever



PSO Initalization
function init_particles(num, dim, rand)
    local particles = {}
    for i=1, num do
        local particle = {}
        particle.p = {}
        particle.v = {}
        for j=1, dim do
            if rand then
                tinsert(particle.p, random())
                tinsert(particle.v, random())
            else
                tinsert(particle.p, 0)
                tinsert(particle.v, 0)
            end
        end
        particle.f = 999999
        tinsert(particles, particle)
    end
    return particles
end



PSO Runtime Loop

function run_pso (param, fitness_func)

    local particles = init_particles(num, dim, random)

    local pbest = particles[1]
    local gbest = particles[1]

    while iterations > 0 and pbest.f > success do
        pbest, gbest = calc_fitness(particles, fitness_func, pbest)
        update_particles(particles, pbest, gbest, pphi, gphi)
        print_particles(particles)
        iterations = iterations - 1
    end

    return pbest
end



PSO Calc Fitness
function calc_fitness (particles, fitness_func, pbest)
    local gbest = particles[1]

    for i=1, getn(particles) do
        particles[i].f = fitness_func(particles[i])

        if particles[i].f < pbest.f then
            pbest = {
                p = {},
                v = {},
            }
            for j=1, getn(particles[i].p) do
                tinsert(pbest.p, particles[i].p[j])
                tinsert(pbest.v, particles[i].v[j])
            end
            pbest.f = particles[i].f
        end

        if particles[i].f < gbest.f then
            gbest = particles[i]
        end
    end

    return pbest, gbest
end



PSO Update Particle

function update_particles (particles, pbest, gbest, pphi, gphi)
    for i=1, getn(particles) do
        particles[i].v = 
            update_velocity(particles[i], pbest, gbest, pphi, gphi)
        particles[i].p = 
            update_position(particles[i])
    end
end



PSO Update 
Position and Velocity

function update_position (particle)
    local position = {}
    for i=1, getn(particle.p) do
        tinsert(position, particle.p[i] + particle.v[i])
    end
    return position
end

function update_velocity (particle, pbest, gbest, pphi, gphi)
    local velocity = {}
    for i=1, getn(particle.v) do
        local prand = pphi*random()
        local grand = gphi*random()
        local pdiff = pbest.p[i] - particle.p[i]
        local gdiff = gbest.p[i] - particle.p[i]
        local vel = particle.v[i] + (prand * pdiff) + (grand * gdiff)
        tinsert(velocity, vel)
    end
    return velocity
end



PSO Fitness Function

fitness_func = function (particle)
    local point = {5, 8}
    local fitness = 0.0
    for i=1, getn(point) do
        fitness = fitness + (point[i] - particle.p[i])^2
    end
    return sqrt(fitness)
end

Note the n-space flair



PSO Problem Space



PSO Fitness Landscape



PSO Results

• The graphs will show the positions of 5 
particles trying to find the feature vector: 
(5, 8)

• Last graph will have the best particle ever 
found

• Note particles search the problem space to 
find the maxima (in this case point (5, 8))
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85 Iterations Later...





PSO and NN:
Stochastic Training

• Change the vector of numbers to represent 
the weights of all of the connections in a 
neural network

• Change the fitness function to how well the 
net performs on training data

• Use Hamming Distance to calculate the 
distance from actual to target outputs



Questions?

?


