

Functions, Data Structures, I/O

Review

● If statements
● For loops
● While loops
● Continue statement
● Break statement
● Questions? Homework problems?

Overview

● Functions
● Definitions
● Calling

● Common Data Structures
● List
● Tuple
● Dictionary

● Input/Output
● From the console
● From file
● Pygame events

Functions

● Help us structure code

● Allows us to define new behavior for our program

● We have already use quite a few of them (print, rect, blit)

● Now we get to define them:

def print_multiple_hellos(some_number):

for n in range(some_number):
print(“ Hello”)

Functions (Follow Along!)

● Make an add 3 function!

● To define a function start with the keyword def
● Then add the name
● Add the arguments in parentheses
● Follow the arguments with a colon
● Indent the body
● And return the argument plus 3 using the
return keyword

That add three function!

def add3 (x):
return x + 3

Data Structures

● Allow us to store things so that we can use
them later

●

● Python offers 3 common and powerful data
structures: lists, tuples, and dictionaries.

● Added bonus: sets!

Lists

a_list = [2, 1, 'bacon', 'eggs', []]
● A collection of elements enclosed in [] and

separated by commas
● Can contain elements of any type
● [] denotes an empty list
● Elements in a list can be accessed by their index

(starting at 0), so that a_list[2] gives us 'bacon'
● Accessing an index outside the list will throw a

nasty error at you

Lists (Follow Along!)

>>> a = [1, 2]

>>> a

>>> a.append(3)

>>> a.remove(2)

>>> len(a)

>>> a.index(3)

>>> help(list)

Tuples

a_tuple = (2, 3, 5, 6, 'eggs')
● Collection of elements enclosed in () and separated

by commas
● Can contain elements of any type
● You cannot have empty tuples
● A single element tuple looks like this: (1,)
● Can't access an index outside the tuple.
● The look and work very much like lists... BUT!
● You cannot modify the contents of a tuple!

Dictionaries

a_dict = {'a':1,'b':'eggs',2:'bacon'}
● A collection of key:value pairs enclosed in { } and

separated by commas.
● Keys and values can be of any type.
● However, keys cannot be modifiable (so you

cannot use a variable as a key)
● Values are accessed through their key (a_dict['b']

→ 'eggs')

Input/Output

● I/O is the way you interact with your users
● Main two modes of I/O are the files and the

shell
● The print function prints to the shell

● The function raw_input function gets input
from the shell

Raw Input (Follow Along!)

>>> some_number = raw_input(“GIMMI YOUR
NUMBER! “)

>>> some_number

>>> int(some_number)

File I/O

● To read or write to a file you have to open it
using the open function

● To read use a for loop on the opened file

● To write to the file use the write function

● When done close the file using the close
function

● The with statement is an awesome shortcut for
opening and closing files

File I/O (Follow Along!)

>>> f = open('test.txt', 'w')

>>> f.write(“ Hello world!”)

>>> f.close()

>>> with open('text.txt', 'r') as f2:

… for line in f2:

… print line

Pygame Events

● Events are how you deal with keyboard, mouse
and joystick presses

● Events have types that specify what they are
(keyboard vs mouse, etc)

● First get a list of the events using the
pygame.event.get function

● Then you loop over the events handling them
as they come

Pygame Events (In Code!)

>>> events = pygame.event.get()

>>> for e in events:

… if e.type == QUIT:

… return

… elif e.type == KEYDOWN:

… if e.key == K_a:

… print(“ A was pressed!”)

… else:

… print(“ Something else...”)

… else:

… print(“ Not keydown”)

Workshop and Demo code!

● Questions so far?
● Homework!
● Use GitHub!
● Email list!
● Problems?
● Suggestions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

