
Microcontrollers
Class 0: Overview and Setup

February 28, 2011

Outline

What is a Microcontroller?

How do I do That?

Hello World!



Outline

What is a Microcontroller?

How do I do That?

Hello World!

Outline

What is a Microcontroller?

How do I do That?

Hello World!



What is a microcontroller?

It’s a whole computer on a chip:

I Write programs in various languages (C, assembly, BASIC)

I CPU (1-20MHz)

I Dynamic memory (SRAM)

I Non-volatile memory (Flash ROM and EEPROM)

But it’s a very little computer:

I 8-bit words

I Not much memory (8kb program space, 512 bytes SRAM)

I No operating system

I Low-level input/output

I = halfway between a “component” and a “computer”

What can it do?

Damn-near anything!

I Super-fancy Blinkers

I Robots

I ROM readers

I Phone dialers

I Noisemakers

I GPS dataloggers

I What do you need to do?



Outline

What is a Microcontroller?

How do I do That?

Hello World!

Basic Functionality

What do they Actually Do?

I Output: 5v or 0v for each pin.
(Light up LEDs, flip switches, spin motors)

I Input: Digital (pushbuttons, threshold sensors) or
Analog-to-Digital conversion (light levels, audio waveforms)

I Neither: (“Hi-Z”) plays like it’s disconnected from the circuit

I Pulse-width Modulation (PWM): Flip the digital output on
and off quickly. Simple way of making an analog signal with a
digital output pin



Other Stuff

Useful features

I Timers: Our chips have (3) internal clocks,
useful for both timing and scheduling events

I (Timers also make doing PWM and audio stuff easy)

I Serial I/O: built-in hardware-level routines for
USART, SPI, I2C serial protocols

I Interrupts: Allow you to call a subroutine whenever a button
is pushed or a certain timer event occurs (and more)

Pinouts



The Basic Workflow

What will we actually be doing?

I Write code in C (using whatever you want)

I Cross-compile for the chip →
the machine-code version of your code

I Transfer the code to the chip:
– Programmer to talk to the chip
– Software to run the programmer

I Get feedback/debug until it works

The “Toolchain”

How to get firmware into the chippy

I Cross-compiler: GNU GCC and a bunch of help from avr-libc

I AVRdude: knows how to run a bunch of programmers

I Programmer (USBtiny) or a bootloader already flashed into
the chip

I Usually a Makefile to compile and flash for you in one step

I http://wiki.hacdc.org/index.php/Installing_AVR_

Toolchain

http://wiki.hacdc.org/index.php/Installing_AVR_Toolchain
http://wiki.hacdc.org/index.php/Installing_AVR_Toolchain


Outline

What is a Microcontroller?

How do I do That?

Hello World!

Blinky LED Demo

You’ve gotta start somewhere...

I Wire up: Connect an LED from pin PB0 to a resistor to
ground. See the example board.

I On the LED, long lead is positive and goes to PB0
Short lead goes to a (120 Ω) resistor.

I Now open up the file LED Demo.c



Our First Program

Structure

I #include are directives to load up code from other files

I #define sets macro variables that are substituted into values
before the program is compiled

I Defining your pinouts for the chip is very nice because it
makes readable code and documents how you want the thing
wired up.

I Main function – this is what gets run when the chip wakes up

I while(1) endless loop runs forever

Bits, Registers, and Values

Configuring the Chip

I Memory locations (”registers”) map directly to hardware,
flipping internal switches on or off

I Each register byte is 8 switches, each bit a switch

I We can read/write/edit the numerical values in these registers
to change the chip’s configuration or state

I DDRB = BV(LED);

I ”Data direction register B” has 8 switches,
set to 0 for input or 1 for output

I Here, we’re setting up the LED’th pin of port B for output



Writing Output

PORTB = BV(LED);

I Pins are grouped together in sets of eight into ports

I PORTB is another register, containing a switch for each of
eight pins

I When the DDR is set for output, writing a 0 to a PORT register
bit sets it to the ground voltage, and writing a 1 sets it to
logic high.

I BV(i) shifts a bit into the i ’th position, read Bit Value

I So we’re turning on the LED’th bit/switch/pin in Port B,
lighting up our LED!

I Note the use of a #define LED macro to make the code
readable

Taking Blinking to the Extreme

Getting Fancier

I For homework, wire up all eight LEDs to all of the PortB pins

I Now you can write a byte directly to PORTB and it’ll be
displayed on the blinkenlights

I What can we do with this? Fun patterns.



Homework

Cylon Eyes

I The cylons/knight-rider thing has been done to death on the
intertubes. Here’s your chance to find out why!

I Solder up 8 LEDs and resistors to complete the Port B outputs

I Using what you know about turning on different pins, make a
cylon-eyes type scroller

I Can you make it look better? Can you think of cooler
patterns?

Homework Extension

POV

I Make the delay in your cylon eyes very very quick

I Wave the thing around in the air

I Voila!

I Now code up cool patterns for it.

I If you know enough C, you can make good use of character
arrays and for loops here.



The End

Outline


	
	What is a Microcontroller?
	How do I do That?
	Hello World!

