Microcontrollers

Class 0: Overview and Setup

February 28, 2011

Outline

What is a Microcontroller?

How do | do That?

Hello World!

Outline

Outline

What is a Microcontroller?

What is a microcontroller?
It's a whole computer on a chip:

» Write programs in various languages (C, assembly, BASIC)
CPU (1-20MHz)

» Dynamic memory (SRAM)

» Non-volatile memory (Flash ROM and EEPROM)

\{

But it's a very little computer:

» 8-bit words

» Not much memory (8kb program space, 512 bytes SRAM)
» No operating system

» Low-level input/output

» = halfway between a “component” and a “computer”

What can it do?

Damn-near anything!

» Super-fancy Blinkers

» Robots

» ROM readers

» Phone dialers

» Noisemakers

» GPS dataloggers

» What do you need to do?

Outline

How

do | do That?

Basic Functionality

What do they Actually Do?

>

Output: 5v or Ov for each pin.
(Light up LEDs, flip switches, spin motors)

Input: Digital (pushbuttons, threshold sensors) or
Analog-to-Digital conversion (light levels, audio waveforms)

Neither: (“Hi-Z") plays like it's disconnected from the circuit

Pulse-width Modulation (PWM): Flip the digital output on
and off quickly. Simple way of making an analog signal with a
digital output pin

Other Stuff

Useful features

» Timers: Our chips have (3) internal clocks,
useful for both timing and scheduling events

> (Timers also make doing PWM and audio stuff easy)

» Serial I/O: built-in hardware-level routines for

USART, SPI, 12C serial protocols

> Interrupts: Allow you to call a subroutine whenever a button
is pushed or a certain timer event occurs (and more)

Pinouts

(PCINT14/RESET
(PCINT16/RXD
(PCINT17/TXD
(PCINT18/INTO

(PCINT19/0C2B/INT1

(PCINT20/XCK/TO

PCs6 []
PDO L[]
PD1 [}
PD2 [
PD3 [}
PD4 [}
VCC [
GND [}
(PCINT6/XTAL1/TOSC1) PB6 [}
(PCINT7/XTAL2/TOSC2) PB7 []
(PCINT21/0C0B/T1) PD5 [}

)

)

)

e e

(PCINT22/OCO0A/AINO) PD6 [
(PCINT23/AIN1) PD7
(PCINTO/CLKO/ICP1) PBO [

w ~ U W =

—_“ o WD
WM =2 O

28
27
26
25
24
23
22
21
20
19
18
17
16
15

|1 PC5
1 PC4
1 PC3
| 1PC2
[1PCH1
| 1PCO
[1GND
| 1 AREF
|1 AVGC
|1 PB5 (SCK/PCINTS)
|1 PB4 (MISO/PCINT4)
| 1 PB3 (MOSI/OC2A/PCINTS3)
(
(

ADCS5/SCL/PCINT13)
ADC4/SDA/PCINT12)
ADC3/PCINT11)
ADC2/PCINT10)
ADC1/PCINT9)
ADCO/PCINTS)

i —

| 1 PB2 (SS/OC1B/PCINT2)
| 1PB1 (OC1A/PCINTT)

The Basic Workflow

What will we actually be doing?

» Write code in C (using whatever you want)

» Cross-compile for the chip —
the machine-code version of your code

» Transfer the code to the chip:
— Programmer to talk to the chip
— Software to run the programmer

» Get feedback/debug until it works

The “Toolchain”

How to get firmware into the chippy

» Cross-compiler: GNU GCC and a bunch of help from avr-libc
» AVRdude: knows how to run a bunch of programmers

» Programmer (USBtiny) or a bootloader already flashed into
the chip

» Usually a Makefile to compile and flash for you in one step

» http://wiki.hacdc.org/index.php/Installing AVR_
Toolchain

http://wiki.hacdc.org/index.php/Installing_AVR_Toolchain
http://wiki.hacdc.org/index.php/Installing_AVR_Toolchain

Outline

Hello World!

Blinky LED Demo

You've gotta start somewhere...

» Wire up: Connect an LED from pin PBO to a resistor to
ground. See the example board.

» On the LED, long lead is positive and goes to PBO
Short lead goes to a (120 Q) resistor.

» Now open up the file LED Demo.c

Our First Program

Structure

#include are directives to load up code from other files

#define sets macro variables that are substituted into values
before the program is compiled

Defining your pinouts for the chip is very nice because it
makes readable code and documents how you want the thing
wired up.

Main function — this is what gets run when the chip wakes up

while (1) endless loop runs forever

Bits, Registers, and Values

Configuring the Chip

>

Memory locations (" registers”) map directly to hardware,
flipping internal switches on or off

Each register byte is 8 switches, each bit a switch

We can read/write/edit the numerical values in these registers
to change the chip's configuration or state

DDRB = BV(LED);

"Data direction register B" has 8 switches,
set to O for input or 1 for output

Here, we're setting up the LED'th pin of port B for output

Writing Output

PORTB = _BV(LED);

>

>

Pins are grouped together in sets of eight into ports

PORTB is another register, containing a switch for each of
eight pins

When the DDR is set for output, writing a 0 to a PORT register
bit sets it to the ground voltage, and writing a 1 sets it to
logic high.

_BV (i) shifts a bit into the /'th position, read Bit Value

So we're turning on the LED’th bit/switch/pin in Port B,
lighting up our LED!

Note the use of a #define LED macro to make the code
readable

Taking Blinking to the Extreme

Getting Fancier

>

| 2

>

For homework, wire up all eight LEDs to all of the PortB pins

Now you can write a byte directly to PORTB and it'll be
displayed on the blinkenlights

What can we do with this? Fun patterns.

Homework

Cylon Eyes

» The cylons/knight-rider thing has been done to death on the
intertubes. Here's your chance to find out why!

» Solder up 8 LEDs and resistors to complete the Port B outputs

» Using what you know about turning on different pins, make a
cylon-eyes type scroller

» Can you make it look better? Can you think of cooler
patterns?

Homework Extension

POV

v

Make the delay in your cylon eyes very very quick
» Wave the thing around in the air

» Voila!

» Now code up cool patterns for it.

» If you know enough C, you can make good use of character
arrays and for loops here.

The End

	
	What is a Microcontroller?
	How do I do That?
	Hello World!

