Intro to Microcontrollers

Class 3: Input: Buttons and Analog-to-Digital Conversion

September 29, 2008

Outline

Review and Today's Setup

Binary (logic) Input

Debouncing

Analog Input

Outline

Review and Today's Setup

Binary (logic) Input

Debouncing

Analog Input

Review

Show and Tell

Anyone make anything cool they want to show?

Output

- Learned how to set up pins for output
- How to write to them using bit-math
- Did a little PWM at the end
- ► So far, done LED stuff
- ► Today, let's do very simple audio

Audio

What is sound?

- Sound: repetitive compression/decompression of the air around you
- Speaker: has an electromagnet inside moves a cone forward and back depending on current running through it
- Our simple sound plan: Use the 5v/0v output we know from last week to make current flow through a speaker and make noise
- Pleasant audio frequencies from 30 Hz to 4200 Hz: 33mS to 283µS per cycle = 16mS to 140µS on/off times

Simple Organ

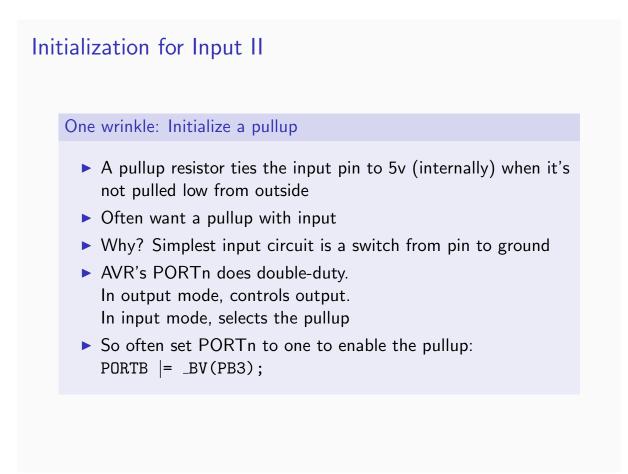
Setting up for sound

- So want to toggle a pin every 140μ S to 16mS
- ► How?
- Make a loop that takes a fixed amount of time, toggle every n'th time through
- See scale.h a bunch of macros to help make musical notes
- Middle C: Around 2mS on/off times.
 2mS / 200 = 10µS per loop
- Should just work if we're not doing too much math
- There is a better way to do it with timers, next class...

Outline

Review and Today's Setup

Binary (logic) Input


Debouncing

Analog Input

Initialization for Input

Too easy

- To initialize for output set bit to one DDRx = _BV(whatever)
- For input, want to set the bit to zero instead.
- But zero is the default value. Done!

Reading the Input

Reading the input register

- Input values in the PINx register
- Can read them like readIn = PINB;
- readIn will contain an 8-bit number, each bit corresponding to the voltage state of all 8 of its pins.

Reading one pin: the most common case

- PIND & _BV(PD3);
- If PD3 has more than 1.25v on it, we'll get 00001000
- If PD3 has less than 1.25v on it, we'll get 00000000
- ► Can use as a test of pin state: if(x){...}
- So let's go to the simpleOrgan project to see it in action
- Remember negative logic!

Outline

Review and Today's Setup

Binary (logic) Input

Debouncing

Analog Input

The Real World

Switching Noise

- In reality, switches make/break contact a bunch of times as you press it
- Two pieces of metal touching, bending, with different resistance all over
- If you're trying to make a per-button-press device, this can cause troubles
- Symptom: Get multiple presses for what you thought was a single press
- Solution: Debouncing

Debouncing

Patience!

- The trick is to see if the button is still pressed some time after it was first pressed
- Couple ways to do this: if you've already got a timing loop, just check back later

Outline

Review and Today's Setup

Binary (logic) Input

Debouncing

Analog Input

The End		
< Outline		
• Outline		