
Intro to Microcontrollers
Class 4: Input II: Debouncing and Analog-to-Digital Conversion

October 6, 2008

Outline

Review and Today’s Setup

Debouncing

Analog to Digital



Outline

Review and Today’s Setup

Debouncing

Analog to Digital

Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for input

I Saw an if() statement

I Saw more bit-masking examples (for input this time)

I Talked a bit about audio, and got buzzers buzzing

I Quiz: What is a pullup resistor for?
How do you enable it?



My Screwup Last Time

Setting it Straight

I Here’s why you need to think hard (sometimes) about bit logic

I Read in PINB – 8 bits, one for each pin

I Want to test when PB0 goes low (is pressed)

I (PINB & BV(PB0))
→ 00000000 if PB0 is low, 00000001 if PB0 high

I What I did: (wrong): ˜(PINB & BV(PB0))

I What would have worked: !(PINB & BV(PB0))

I It inverts the last bit, alright, but also all of the others too

I Instead: ˜PINB & BV(PB0) does what we want:
˜PINB → xxxxxxx1 if PB0 is low
& BV(PB0) masks/zeros all but PB0

Outline

Review and Today’s Setup

Debouncing

Analog to Digital



The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it or release it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing

Debouncing

Patience!

I The trick is to see if the button is still pressed some time after
it was first pressed

I Couple ways to do this:
if you’ve already got a timing loop, you can keep track of how
many times through, and re-test

I Or if you’re not concerned with real-time performance, you
can just wait a bit and double-check



Outline

Review and Today’s Setup

Debouncing

Analog to Digital

Reading in from the Outside World

From Black-and-white to Greyscale

I Have a voltage on a pin, and you want to know what it is

I So far, just know on/off

I Want to convert the voltage to a number that the chip can
use

I Analog to digital conversion

I AVRs have a single 10-bit ADC, which it can use on many pins

I Setup is the tricky part...



ADC Theory

How does it work?

I Inside the chip, it has a multi-way switch (multiplexer)

I When you take a reading, it compares whichever pin the
switch is connected to

I It starts by comparing the pin voltage to a voltage reference
of 1/2 Vcc (2.5V in our case)

I If it’s higher, it divides the source by 2 and compares again

I If it’s lower, it divides the reference by 2 and compares

I Stores the results of ten comparisons in binary form in two
registers

I Start comparison, wait until done, then read it out

Voltage Divider

A bit of circuit theory

I Electricity is like water

I Voltage = water pressure. Measured in volts.

I Current = the flow of water. Measured in amps (charge /
sec).

I Resistors are like thin pipes
they restrict the flow of water, and you end up with less
pressure downstream of them

I A voltage divider is just two resistors in a row

I Easiest case: equal resistors.
The voltage in-between them is 1

2 of the voltage across both



Light Detection

Make a voltage divider from the LDR

I So we’ve got a good source of 5v

I And we’ve got a light-dependent resistor

I If we make a voltage divider with the LDR in it,
the voltage in the divider will depend on the light

I Then just read that off, play notes accordingly

I Voila. Light-dependent theremin.

ADC Initialization

Things to do

I Set up our ADC pin for input

I Turn off the traditional digital sensing stuff

I Point the multiplexer at our ADC pin

I Enable the ADC

I Wait for the conversion to finish

I Read out the value



The End

Outline


	Review and Today's Setup
	Debouncing
	Analog to Digital

