Week 6 - DFFs and
Testbenches

Agenda

e DFF Modeling
o RTL Review
o How else to model DFF
o DFF Questions?
e [estbenches
o TB template
o RTL Review
o TB Questions?
e BREAK
e SR and LFSR examples

ir Key Points from L4 (Sequential Blocks) v

Classification:

m Latch: level sensitive (positive latch passes input to output on high phase, hold
value on low phase)

m Register: edge-triggered (positive register samples input on rising edge)

m Flip-Flop: any element that has two stable states. Quite often Flip-flop also used
denote an (edge-triggered) register

Positive DB D Q—Q D D Q—Q Positive
Latch Register
I i
Clk Clk

m Latches are used to build Registers (using the Master-Slave Configuration), but
are almost NEVER used by itself in a standard digital design flow.

m Quite often, latches are inserted in the design by mistake (e.g., an error in your
Verilog code). Make sure you understand the difference between the two.

m Several types of memory elements (SR, JK, T, D). We will most commonly use
the D-Register, though you should understand how the different types are built
and their functionality.

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 2

RTL Review - DFF

// FALLING EDGE D FLIP FLIP MODULE:

module d_ff gates (d, clk, rst, g, q_bar);

input d, clk, rst;

output q, g bar;

wire n1,n2,n3,q_bar n, cn,dn,n4,n5,n6;

// First Latch not (n1,d);

nand (n2,d,clk); nand (n3,n1,clk); nand (dn,q_bar_n,n2); nand
(q_bar_n,dn,n3, !rst);

// Second Latch not (cn,clk); not (n4,dn); nand (n5,dn,cn); nand
(n6,n4,cn); nand (q,q_bar,n5); nand (q_bar,q,n6, !rst);
endmodule

RTL Review - DFF

e Master slave latch configuration works
e Questions

o How does this get synthesized?

o How do | use this?

RTL Review - DFF

e Master slave latch configuration works
e Questions
o How does this get synthesized?
m ASIC Tool - large amount of gates
m FPGA Tool - Xilinx Synthesis output:
= \Warnings of Combinatorial loops
m Each DFF occupies all the lookup tables for TWO

Spartan3 slices! Wastes DFF's! :'-[

m Cannot guarantee timing, since its clock and rst
are routed through FPGA fabric and not the clock
trees!

o How do | use this?
m Have to instance it each time we want to use it!
Cannot imply the DFF!

T The Sequential always Block

m Edge-triggered circuits are described using a sequential

always block

Combinational Sequential
module combinational(a, b, sel, module sequential(a, b, sel,
out) ; clk, out);
input a, b; input a, b;
input sel; input sel, clk;
output out; output out;
reg out; reg out;
always @ (a or b or sel) always @ (posedge clk)
begin begin
if (sel) out = a; if (sel) out <= a;
else out = b; else out <= b;
end end
endmodule endmodule
a—1 a—1
out D QF— out
b —0 b —0
r>
sel sel clk

L5: 6.111 Spring 2006

Introductory Digital Systems Laboratory

i Importance of the Sensitivity List i

m The use of posedge and negedge makes an always block sequential
(edge-triggered)

m Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis!

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear
dule dff 1 d, cl b,
modu-e _sync_clear(crear module dff async clear(d, clearb, clock, q);
clock, q): . = —
. input d, clearb, clock;
input d, clearb, clock; output gq;
output qg; reg q;
reg g;
always @ (posedge clock) always @ (negedge clearb or posedge clock)
begin begin
if (!clearb) g <= 1'bO; if (!clearb) g <= 1’bO;
else q <= d; else q <= d;
end engm dul
endmodule endmodule
always block entered only at always block entered immediately
each positive clock edge when (active-low) clearb is asserted

Note: The following is incorrect syntax: always @ (clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

= Assign any signal or variable from only one always block, Be
wary of race conditions: always blocks execute in parallel

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 7

i Simulation (after Place and Route in Xilinx) Mir

* DFF with Synchronous Clear

=t wave - default

File Edit Wiew Insert Format Tools Window

BE% é%h&nﬁ B e I_E ® S @ B[R E‘.l[ﬁl_]&i 3¢

'_ .-"ttl dffsynu:.-’q

I aw
Curzor 1 258?1 'I pz
‘ » R

| 20093 ps to 457750 ps | y

* DFF with Asynchronous Clear

=i wave - default

File Edit View Insert Formakt Toaols Window

EHS % 2@ M r:saﬁLj I_J ® G @B

Atbdffasynedclock |0

1 /tb_difasyncid 1
f:! Ab_dffasync/clearb | 1

Ab_difaspncd St a B

Clear happens|on
Mow |0Ops | i e SEEEEEE g " falling) gdge of clearb ;
Cursor1 |37 ps
4 [» ;l_ . M i
| 19394 ps to 419555 ps | y

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 8

if Use Nonblocking for Sequential Logic Illir

always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= ql; 92 = ql;
out <= q2; out = q2;
end end
“At each rising clock edge, q1, g2, and out “At each rising clock edge, q1 = in.
simultaneously receive the old values of in, After that, g2 =gl =in.
ql, and g2.” After that, out=qg2 =gl =in.

Therefore out = in.”

ql q2 _ ql g2
in—D QF~—D Q=D Q— out In D Qp—e—e— oOut

clk l_> |_> |_> clk |_>

m Blocking assignments do not reflect the intrinsic behavior of multi-stage
sequential logic

m Guideline: use nonblocking assignments for sequential
always blocks

L5: 6.111 Spring 2006 Introductory Digital Systems Laboratory 11

How TO model / infer a DFF

Assume output reg Q, input wire D, etc..
- DFF ----
always@(posedge clk)

Q <= D;

---- DFF w/ Clock Enable ----
always@(posedge clk)
if(en)
Q <= D;
else
Q<=Q

How TO model / infer a DFF

Assume output reg Q, input wire D, etc..
---- DFF with synchronous reset ----
always@(posedge clk)
iIf(rst)
Q <= 0;
else
Q <= D;

---- DFF w/ Clock Enable & async reset ----
always@(posedge clk or posedge rst)
If(rst)
Q <= 0;
else if(en)
Q <=D;
else
Q<=Q;

How NOT TO model / infer DFF

Assume output reg Q, input wire D, etc..

---- Which one is clock? ----

always@(posedge rst or posedge clk or posedge A)
If (rst) Q<= 1;
else if (clk) Q<= 0;
else Q<= D;

---- What happens here? ----
always (posedge A)

If (rst) Q<= 1;

else if (clk) Q<= 0;

else Q <=D;

How NOT TO model / infer DFF

Assume output reg Q, input wire D, etc..
---- Which one is clock? ----
always@(posedge rst or posedge clk or posedge A)
if (rst) Q<= 1; //set
else if (clk) Q<= 0; //reset
else Q<= D;
// A becomes the clock
---- What happens here? ----
always (posedge A)
if (rst) Q<= 1;
else if (clk) Q<= 0;
else Q <= D;
// DFF, with the input being equal to rst + Iclk&D

RTL Coding Timing Question

reg [2:0] my var;

initial

begin

for (my_var=0; my var<8; my_var=my_var+1)
#5 a=a+b;

#5 $finish;

end

Question - When will the simulation end?

RTL Coding Timing Question

reg [2:0] my var;

initial

begin

for (my_var=0; my var<8; my_var=my_var+1)
#5 a=a+b;

#5 $finish;

end

Question - When will the simulation end?

Answer - 45 units. Not seconds or nanoseconds, 45 time units. T
IS no timescale definition herel

ex: timescale 1ns/ 10ps

General test bench structure

In general, your test bench may include all of the following
items:

nclude statements
Parameter definitions

DUT Input (reg) data

e DUT Output (wires) data

e Any interconnects, additional registers, events

e DUT Instantiation

e Any other test structures (DUT vs. Model)

e |nitial Conditions/Test prep (read in a file, load array, ...)
e Stimulus

e Event Definitions

e Monitor - Either data capture, self checking TB, et cetera...

General test bench structure - cont

e Include statements
o Timescale.v
m Place the timescale definition in a separate file. Not
required.
o module defines.v
m Place any global definitions in a separate file, include
it in all required parts of the design.
e Parameter definitions
o Clock period, finish time, control words, ... all may need
to be defined as parameters.
o Put these near the top of your testbench

General test bench structure - cont

e DUT Input regs
o Need to place data on the input of your DUT, so you'll
want to use REGs to store the data your using. Instance
all your input regs together.
e DUT Output wires
o Your output from your DUT needs to be connected to
something, for this you'll want to use wires. Instance
your output wires together.
m Not restricted from storing output into reg datatypes,
just not _required
e Interconnects, other data...
o If you have multiple modules to connect together with
your DUT, instance their interconnects together.
o Integers, other regs, memory arrays, all may be needed,
so instance them after interconnects.

General test bench structure - cont

e DUT Instantiation
o You'll have to instance your device under test.
o Get in the practice of using name ports
m Ditch this style
m upcounter dut (rst, clk, enable, q, gb);
m Use this style
m upcounter dut (.rst(rst), .clk(clk), .enable(enable),
qa(q), -gb(ab));
e If you use other modules in your TB, be sure to instance
them as well.

General test bench structure - cont

e Initial Conditions
o Your first initial block, separate from data
o Make sure you set all of your registers to an initial value
o Reset may be set to a normal, non-reset state.

e May want to have a block for ending the simulation
o Either a #ENDTIME $%finish directive in your initial block
o Or a separate initial block, just for causing the simulaiton

to end

o This is to prevent your TB from running forever...

General test bench structure - cont

e Stimulus
o This is your sequence of input to your DUT, kept in its
own Initial block
o This may be a series of assignment statements with
delays dictating input, or a series of event triggers, or a
mixture of the two.
e Event definitions
o always @(event_name) begin....end blocks
o These blocks enter when the event event _name is
triggered. ->event name;
o Can lead to very robust test benches.
e Monitor
o Waveform Capture
o Self checking
o Status/Error messages

RTL Review - Testbench

module upcounter _tb;

reg rst, clk, enable;

wire [3:0] g, gb;

upcounter dut(rst, clk, enable, g, gb);

initial begin

rst = 1; enable = 0; clk=0;

#1:rst=0:;

clk=1; #1: clk=0: #1: clk=1: #1: clk=0: #1; clk=1; #1; clk=0; #1;
clk=1; #1: clk=0: #1: clk=1: #1: clk=0: #1: clk=1; #1; clk=0; #1;
clk=1: #1: clk=0:; #1: clk=1; #1;

end

initial begin

$dumpfile ("waves.Ixt"); $dumpvars (0, upcounter_tb);
end
endmodule

RTL Review - Testbench

e Items of Concern
o Implicit ports when instantiating DUT
o Same Initial block used for stimulus and initial conditions
o Clock explicitly defined

Clock Generator

//[parameters
parameter CLKPERIOD = 20; //50Mhz @ 1ns timescale

//
// lots of things going on in between here...
//
//clk

always

#(CLKPERIOD/2) clk = ~clk;

/[carry on, my friend, with your free running clock!

Lets code - Shift Register

module shift(D, Q, Q_bus, clk, rst);
parameter N=4;
parmeter TP=1,
input D, clk, rst;
output Q;
output [N-1:0] Q_regs;
reg [N-1:0] Q_regs;
assign Q = Q_regs[n-1];
always@(posedge clk)
if(rst)
Q_regs <= #Tp N'bO;
else
Q_regs <= #Tp {Q_regs[n-2:0],D);
end module

Lets code - Linear Feedback Shift
Register

module Ifsr_example(D, Q, Q_regs, clk, rst);
parameter N=3;
parameter Tp=1;
input D, clk, rst;
output Q;
output [N-1:0]
Q_regs; reg [N-1:0] Q_regs;
assign Q = Q_regs[0];
always@(posedge clk)
if(rst)
Q_regs<=#Tp N'b1;
else
Q_regs<=#Tp {Q_regs[1],Q_regs[0],Q_regs[1]*Q_regs
[2]};

end module

Lets code - Testbench

e Build a testbench for each module, SR and LFSR,
o Observe their operation is correct through waveforms or
with a self checking testbench
e Alternatively, add a clock enable to each module, and write
a single testbench and test both modules together, one at a
time.

	Week 6 DFFs and Testbenches

	Agenda

	DFF Overview

	RTL Review - DFF

	RTL Review - DFF Questions

	RTL Review - DFF Answers

	Sequential Always Block

	Sensitivity Lists

	Simulation

	Nonblockiong for Sequential Logic

	How TO model a DFF 1

	How TO model a DFF 2

	How NOT to model a DFF 1

	How NOT to model a DFF 2

	RTL Coding Timing Question

	RTL Coding Timing Answer
	Untitled
	General Testbench Structure

	General Testbench Structure cont 1

	General Testbench Structure cont 2

	General Testbench Structure cont 3

	General Testbench Structure cont 4
	General Testbench Structure cont 5

	RTL Review - Testbench
	RTL Review - Testbench Concern

	Clock Generator
	Lets code - Shift Register

	Lets code - Linear Feedback Shift Register

	Lets code - Testbench

