
Week 6 - DFFs and 
Testbenches

 



Agenda

DFF Modeling
RTL Review
How else to model DFF
DFF Questions?

Testbenches
TB template
RTL Review
TB Questions? 

BREAK
SR and LFSR examples



L5: 6.111 Spring 2006 2Introductory Digital Systems Laboratory

Key Points from L4 (Sequential Blocks)Key Points from L4 (Sequential Blocks)

Classification:
Latch: level sensitive (positive latch passes input to output on high phase, hold 
value on low phase)
Register: edge-triggered (positive register samples input on rising edge)
Flip-Flop: any element that has two stable states. Quite often Flip-flop also used 
denote an (edge-triggered) register

D

Clk

Q
QDD

Clk

Q
QDPositive

Latch
Positive
Register

Latches are used to build Registers (using the Master-Slave Configuration), but 
are almost NEVER used by itself in a standard digital design flow.
Quite often, latches are inserted in the design by mistake (e.g., an error in your 
Verilog code). Make sure you understand the difference between the two.
Several types of memory elements (SR, JK, T, D). We will most commonly use 
the D-Register, though you should understand how the different types are built 
and their functionality.



RTL Review - DFF

// FALLING EDGE D FLIP FLIP MODULE: 
//============================================== 
module d_ff_gates (d, clk, rst, q, q_bar); 
input d, clk, rst; 
output q, q_bar; 
wire n1,n2,n3,q_bar_n, cn,dn,n4,n5,n6; 
// First Latch not (n1,d); 
nand (n2,d,clk); nand (n3,n1,clk); nand (dn,q_bar_n,n2); nand 
(q_bar_n,dn,n3, !rst); 
// Second Latch not (cn,clk); not (n4,dn); nand (n5,dn,cn); nand 
(n6,n4,cn); nand (q,q_bar,n5); nand (q_bar,q,n6, !rst); 
endmodule 



RTL Review - DFF

Master slave latch configuration works
Questions

How does this get synthesized?
How do I use this?



RTL Review - DFF

Master slave latch configuration works
Questions

How does this get synthesized?
ASIC Tool - large amount of gates
FPGA Tool - Xilinx Synthesis output:

Warnings of Combinatorial loops
Each DFF occupies all the lookup tables for TWO 
Spartan3 slices! Wastes DFF's! :'-[
Cannot guarantee timing, since its clock and rst 
are routed through FPGA fabric and not the clock 
trees!

How do I use this?
Have to instance it each time we want to use it! 
Cannot imply the DFF!



L5: 6.111 Spring 2006 6Introductory Digital Systems Laboratory

The Sequential The Sequential alwaysalways BlockBlock

Edge-triggered circuits are described using a sequential 
always block

module combinational(a, b, sel,
out);

input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel) 
begin

if (sel) out = a;
else out = b;

end    

endmodule

module sequential(a, b, sel, 
clk, out);

input a, b;
input sel, clk;
output out;
reg out;

always @ (posedge clk) 
begin

if (sel) out <= a;
else out <= b;

end    

endmodule

Combinational Sequential

1

0

sel

out
a

b

1

0

sel

out
a

b
D Q

clk



L5: 6.111 Spring 2006 7Introductory Digital Systems Laboratory

Note: The following is incorrect syntax: always @ (clear or negedge clock)

If one signal in the sensitivity list uses posedge/negedge, then all signals must.

Assign any signal or variable from only one always block, Be 
wary of race conditions: always blocks execute in parallel

Importance of the Sensitivity ListImportance of the Sensitivity List
The use of posedge and negedge makes an always block sequential 
(edge-triggered)

Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis! 

module dff_sync_clear(d, clearb, 
clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (posedge clock) 
begin

if (!clearb) q <= 1'b0;
else q <= d; 

end
endmodule

module dff_async_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;

always @ (negedge clearb or posedge clock) 
begin

if (!clearb) q <= 1’b0;
else q <= d;

end
endmodule

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear

always block entered only at 
each positive clock edge

always block entered immediately 
when (active-low) clearb is asserted



L5: 6.111 Spring 2006 8Introductory Digital Systems Laboratory

Simulation (after Place and Route in Xilinx)Simulation (after Place and Route in Xilinx)
DFF with Synchronous Clear

DFF with Asynchronous Clear

Clear happens on 
falling edge of clearb

tc-q
Clear on Clock Edge



L5: 6.111 Spring 2006 11Introductory Digital Systems Laboratory

Use Use NonblockingNonblocking for Sequential Logicfor Sequential Logic

always @ (posedge clk) 
begin

q1 <= in;
q2 <= q1;
out <= q2;

end

always @ (posedge clk) 
begin

q1 = in;
q2 = q1;
out = q2;

end    

D Q D Q D Qin out
q1 q2

clk

D Qin out

clk

“At each rising clock edge, q1, q2, and out
simultaneously receive the old values of in, 

q1, and q2.”

“At each rising clock edge, q1 = in. 
After that, q2 = q1 = in. 
After that, out = q2 = q1 = in. 
Therefore out = in.”

Blocking assignments do not reflect the intrinsic behavior of multi-stage 
sequential logic

Guideline: use nonblocking assignments for sequential 
always blocks

q1 q2



How TO model / infer a DFF 
Assume output reg Q, input wire D, etc..
---- DFF ----
always@(posedge clk)
        Q <= D;

---- DFF w/ Clock Enable ----
always@(posedge clk)
    if(en)
        Q <= D;
    else
        Q <= Q;



How TO model / infer a DFF 
Assume output reg Q, input wire D, etc..
---- DFF with synchronous reset ----
always@(posedge clk)
    if(rst)
        Q <= 0;
    else
        Q <= D;

---- DFF w/ Clock Enable & async reset ----
always@(posedge clk or posedge rst)
    if(rst)
        Q <= 0;
    else if(en)
        Q <= D;
    else
        Q <= Q;



How NOT TO model / infer DFF 

Assume output reg Q, input wire D, etc..
---- Which one is clock? ----
always@(posedge rst or posedge clk or posedge A)
    if (rst) Q<= 1;
    else if (clk) Q<= 0;
    else Q<= D;
 
---- What happens here? ----
always (posedge A)
    if (rst) Q<= 1;
    else if (clk) Q<= 0;
    else Q <= D;



How NOT TO model / infer DFF 

Assume output reg Q, input wire D, etc..
---- Which one is clock? ----
always@(posedge rst or posedge clk or posedge A)
    if (rst) Q<= 1; //set
    else if (clk) Q<= 0; //reset
    else Q<= D;
 // A becomes the clock
---- What happens here? ----
always (posedge A)
    if (rst) Q<= 1;
    else if (clk) Q<= 0;
    else Q <= D;
// DFF, with the input being equal to rst + !clk&D



RTL Coding Timing Question

reg [2:0] my_var;

initial
begin
for (my_var=0; my_var<8; my_var=my_var+1)
#5 a=a+b;
#5 $finish;
end

Question - When will the simulation end?



RTL Coding Timing Question

reg [2:0] my_var;

initial
begin
for (my_var=0; my_var<8; my_var=my_var+1)
#5 a=a+b;
#5 $finish;
end

Question - When will the simulation end?
Answer - 45 units.  Not seconds or nanoseconds, 45 time units.  There 
is no timescale definition here!
ex:    `timescale 1ns / 10ps



General test bench structure

In general, your test bench may include all of the following 
items:

Include statements
Parameter definitions
DUT Input (reg) data
DUT Output (wires) data
Any interconnects, additional registers, events
DUT Instantiation
Any other test structures (DUT vs. Model)
Initial Conditions/Test prep (read in a file, load array, ...)
Stimulus
Event Definitions
Monitor - Either data capture, self checking TB, et cetera...



General test bench structure - cont

Include statements
Timescale.v

Place the timescale definition in a separate file.  Not 
required.

module_defines.v
Place any global definitions in a separate file, include 
it in all required parts of the design.

Parameter definitions
Clock period, finish time, control words, ... all may need 
to be defined as parameters.
Put these near the top of your testbench



General test bench structure - cont

DUT Input regs
Need to place data on the input of your DUT, so you'll 
want to use REGs to store the data your using.  Instance 
all your input regs together.

DUT Output wires
Your output from your DUT needs to be connected to 
something, for this you'll want to use wires.  Instance 
your output wires together.

Not restricted from storing output into reg datatypes, 
just not _required_

Interconnects, other data...
If you have multiple modules to connect together with 
your DUT, instance their interconnects together.
Integers, other regs, memory arrays, all may be needed, 
so instance them after interconnects.



General test bench structure - cont

DUT Instantiation
You'll have to instance your device under test.
Get in the practice of using name ports

Ditch this style
upcounter dut (rst, clk, enable, q, qb);

Use this style
upcounter dut (.rst(rst), .clk(clk), .enable(enable), 
q(q), .qb(qb));    

If you use other modules in your TB, be sure to instance 
them as well.



General test bench structure - cont

Initial Conditions
Your first initial block, separate from data
Make sure you set all of your registers to an initial value
Reset may be set to a normal, non-reset state.

May want to have a block for ending the simulation
Either a #ENDTIME $finish directive in your initial block
Or a separate initial block, just for causing the simulaiton 
to end
This is to prevent your TB from running forever...



General test bench structure - cont
Stimulus

This is your sequence of input to your DUT, kept in its 
own initial block
This may be a series of assignment statements with 
delays dictating input, or a series of event triggers, or a 
mixture of the two.

Event definitions
always @(event_name) begin....end blocks
These blocks enter when the event event_name is 
triggered.    -> event_name;
Can lead to very robust test benches.

Monitor
Waveform Capture
Self checking
Status/Error messages



RTL Review - Testbench
module upcounter_tb; 
reg rst, clk, enable; 
wire [3:0] q, qb; 
upcounter dut(rst, clk, enable, q, qb); 
initial begin 
rst = 1; enable = 0; clk=0; 
#1; rst = 0; 
clk=1; #1; clk=0; #1; clk=1; #1; clk=0; #1; clk=1; #1; clk=0; #1; 
clk=1; #1; clk=0; #1; clk=1; #1; clk=0; #1; clk=1; #1; clk=0; #1; 
clk=1; #1; clk=0; #1; clk=1; #1; 
end 
initial begin 
$dumpfile ("waves.lxt"); $dumpvars (0, upcounter_tb); 
end 
endmodule



RTL Review - Testbench

Items of Concern
Implicit ports when instantiating DUT
Same Initial block used for stimulus and initial conditions
Clock explicitly defined



Clock Generator

       
       //parameters
parameter CLKPERIOD = 20; //50Mhz @ 1ns timescale

//
        // lots of things going on in between here...
        //

        //clk
always
#(CLKPERIOD/2) clk = ~clk;

        // carry on, my friend, with your free running clock!



Lets code - Shift Register
module shift(D, Q, Q_bus, clk, rst); 
parameter N=4; 
parmeter TP=1; 
input D, clk, rst; 
output Q; 
output [N-1:0] Q_regs; 
reg [N-1:0] Q_regs; 
assign Q = Q_regs[n-1]; 
always@(posedge clk) 
    if(rst) 
        Q_regs <= #Tp N'b0; 
    else 
        Q_regs <= #Tp {Q_regs[n-2:0],D); 
end module



Lets code - Linear Feedback Shift 
Register

module lfsr_example(D, Q, Q_regs, clk, rst); 
parameter N=3; 
parameter Tp=1; 
input D, clk, rst; 
output Q; 
output [N-1:0] 
Q_regs; reg [N-1:0] Q_regs; 
assign Q = Q_regs[0]; 
always@(posedge clk)
    if(rst) 
        Q_regs<= #Tp N'b1; 
    else 
        Q_regs<= #Tp {Q_regs[1],Q_regs[0],Q_regs[1]^Q_regs
[2]}; 
end module



Lets code - Testbench

Build a testbench for each module, SR and LFSR,
Observe their operation is correct through waveforms or 
with a self checking testbench

Alternatively, add a clock enable to each module, and write 
a single testbench and test both modules together, one at a 
time.


	Week 6 DFFs and Testbenches
	Agenda
	DFF Overview
	RTL Review - DFF
	RTL Review - DFF Questions
	RTL Review - DFF Answers
	Sequential Always Block
	Sensitivity Lists
	Simulation
	Nonblockiong for Sequential Logic
	How TO model a DFF 1
	How TO model a DFF 2
	How NOT to model a DFF 1
	How NOT to model a DFF 2
	RTL Coding Timing Question
	RTL Coding Timing Answer
	Untitled
	General Testbench Structure 
	General Testbench Structure cont 1
	General Testbench Structure cont 2
	General Testbench Structure cont 3
	General Testbench Structure cont 4
	General Testbench Structure cont 5
	RTL Review - Testbench
	RTL Review - Testbench Concern
	Clock Generator
	Lets code - Shift Register
	Lets code - Linear Feedback Shift Register
	Lets code - Testbench

