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See http://wiki.hacdc.org/index.php/Avr2011_kit
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Hello World Example

Blinkies!

I Last class, showed an example that turned a pin on and off

I Sections of the C code:
preamble – includes and defines
function definitions (didn’t have any)
main function (chip initialization and endless loop)

I The main loop twiddled a bit back and forth in a memory
register, and that made Vcc and GND volts appear on a
particular pin.

I But let’s flesh that all out a little more...

Registers

Special memory locations

I Usually we think of memory as being a place to store info

I In micros, some special memory regions change the way the
chip behaves: Registers

I DDRx register from initialization of LED blinking demo

I Writing a ”one” to a bit in the DDRx register sets up a
corresponding pin for output

I There’s a similar mapping from the PORTx register to the
output of the pins: writing a 1 to a bit in PORTx sets the
corresponding pin at Vcc, 0 to GND

I When the pins are configured for input, the PIN registers read
0 if a low voltage is present on its pin, and 1 for high



Addressing the Pins

Writing bits to registers

I So, say we’re working on PORTB, and we want to set pin
PB2 and PB6 to 5v (to light up some LEDs)

I Write a 1 in the 2nd and 6th slots in the PORTB register

I Write it in binary directly: PORTB = 0b01000100;

I Write it using its decimal value: PORTB = 68;

I Write it in hex: PORTB = 0x44;

I Write it using a bit-value macro:
PORTB = BV(2) | BV(6);
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The Math

Bit-shift Operators

I <<: Left shift

I >>: Right shift

Binary logic

I & : AND

I |: OR

I ^: XOR

I ~: NOT

Bit-shifting

Left shift: <<

I Very handy: say you want a 1 in the pin-3 place: 00001000

I Start with 1: 00000001

I Shift it over 3:
1 << 3 = 00001000

I Or using the pin-name macros: 1 << PD3

I #define BV(bit) (1 << (bit))

Right shift: >>

I Start with 12: 00001100

I Shift 2: 12 >> 2 = 00000011

I Note that right-shift is like dividing by 2n: handy

I (Similarly, left-shift is like multiplying by 2n)



Using Shifts

Practical examples:

I PORTD = (1 << 3);

I PORTD = (1 << PD3);

I PORTD = (1 << (1+2));

I j = 3; PORTD = (1 << j);

I j = 3; PORTD = BV(j);

Set Two Pins

Addition:

I Say we want PB3 and PB4 both on

I Add them together?

I PORTB = BV(PB3) + BV(PDB); will work

I After all:
00001000

+ 00010000
= 00011000

I Works if you’re just setting the port using
PORT = something;

I But you never see bitwise addition. Why?



Turning Pins On

Why addition won’t cut it

I What if you don’t know (or care) what LEDs are already on,
but you want to turn on PD3?

I PORTD = PORTD + BV(PD3);?

I If PD3 is already on:
00000100

+ 00000100
= 00001000

Ouch!

I Could be worse:
01111100

+ 00000100
= 10000000

I We need an OR statement

Turning More Pins On

The OR statement: |

I 0b01000010 = BV(1) | BV(6), so it’s as good as addition

I OR turns on a bit if this bit or that bit is on

I PORTD = PORTD | BV(PD3);

I If PD3 is not on:
11000000

| 00000100
= 11000100

I If PD3 is already on:
11000100

| 00000100
= 11000100

Yay!

I Turn on PD3, PD4, PD5?
PORTD = PORTD | ( BV(PD3) | BV(PD4) | BV(PD5));

I And here’s a nice shorthand: X = X + Y → X += Y
PORTD |= BV(PD3) | BV(PD4) | BV(PD5);



Turning Pins Off

The AND statement: &

* AND turns on a bit if this bit and that bit are both on

I

11111110
& 10001101
= 10001100

I Can think of AND as masking out the the off bits

I Use it to turn off PD3: PORTD &= 11110111?

I PORTD &= ( BV(PD7) | BV(PD6) | ... skip PD3 ...

| BV(PD0) );

I Works, but it sucks.

Turning Pins Off II

The NOT statement: ˜

I There must be a better way to make 11110111

I BV(PD3) = 00001000

I ~ BV(PD3) = 11110111

I Turn off PD3: PORTD &= ~ BV(PD3);

I Turn off PD3 and PD4:
PORTD &= ~( BV(PD3) | BV(PD4));

Careful with those parentheses!

I Also remember this in terms of the fundamentals:
PORTD &= ~((1 << PD3) | (1 << PD4));

PORTD &= ~((1 << 3) | (1 << 4));



Toggling a Pin

The XOR statement: ˆ

I A lot of the time, it’s handy to be able to toggle a bit

I PORTD ^= BV(PD3);

I

11111001
ˆ 00001000
= 11110001

I

11110001
ˆ 00001000
= 11111001
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One Last Part...

...then Cylon Eyes

I So we know how to turn on bits, and how to turn them off

I How do we make cylon eyes?

I Start with light 0 on.
Turn off the 0th, turn on the 1st, pause
turn off the 1st, turn on the 2nd, pause
etc

I PORTD &= ~ BV(PD0); PORTD |= BV(PD1); delay

PORTD &= ~ BV(PD1); PORTD |= BV(PD2); delay etc.

I {PORTD &= ~ BV(i) ; PORTD |= BV(i+1); delay }
I And make i range from 0 to 7 and back again

(being very careful about endpoints)

Basic Looping

The For loop

I for(i=0; i < 7; i = i + 1){...}
I Repeats the block in parentheses a bunch of times.

I First time, i = 0.

I Then it checks if i < 7.
If not, it skips the block and moves on.
If so, it executes the next command and then the block.

I So in our case, it executes the block with i= 0, 1, 2, 3, 4, 5, 6
and then is done.

I for(i=7; i > 0; i = i - 1){...} and a different block
will bring it back down

I i= 7, 6, 5, 4, 3, 2, 1



Digital Output: Summary

Configure, Write, Done

I So at this point, we’re all set for doing all sorts of cool stuff
with digital output

I First, set up the DDR for output (on pins of your choosing)
by writing a 1 to the relevant bit

I The set the PORT register to set pins high or low, depending

I Loop, repeat
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Initializing for Input

It almost seems too easy...

I To initialize for output set bit to one
DDRx = BV(whatever)

I For input, want to set the bit to zero instead.

I But zero is the default value. Done!

Initialization for Input

One wrinkle: Initialize a pullup resistor

I A pullup resistor ties the input pin to 5v (internally) when it’s
not pulled low from outside

I Often want a pullup with input

I Why? Simplest input circuit is a switch from pin to ground

I AVR’s PORTn does double-duty.
In output mode, controls output.
In input mode, selects the pullup

I So often set PORTn to one to enable the pullup:
PORTB |= BV(PB3);



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Test of pin state: if((PIND & BV(PD3)) == 0){...}
or if(!(PIND & BV(PD3))){...}

I See simplePushbutton.c
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The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing

Debouncing

Many Approaches

I Delay I: turn on after a short delay after first button press

I Delay II: wait short period of time after first press, test again
if it’s still pressed

I Integrate: test N times in a row, with a delay between, decide
the button is pressed if more than M hits

I There are many others. There was even a Hackaday
competition recently for favorite debounce algorithms
(http://hackaday.com/2010/11/09/
debounce-code-one-post-to-rule-them-all/)

I http://www.ganssle.com/debouncing.htm

I I’ll send code around for you to experiment with

I Advertisement for Hardware Timers!

http://hackaday.com/2010/11/09/debounce-code-one-post-to-rule-them-all/
http://hackaday.com/2010/11/09/debounce-code-one-post-to-rule-them-all/
http://www.ganssle.com/debouncing.htm


When To Debounce?

To Debounce

I When you’re counting events

I When you need to know how long the button is held down

I When it’s not really a button, but an analog voltage, and it
spends a bunch of time in the dreaded 0.8v - 1.5v range

Or Not to Debounce

I When all you care about is on/off, don’t mind the bounce

I When other parts of the code act as a delay
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Simple Serial

The easiest way to get rich debugging info

I The microcontroller really comes into its own as an interface

I The USART serial port (and a USB serial cable) is the easiest
way to get data to and from your computer

I AVR has a built-in hardware serial machine, all you have to do
is load its buffer up

I This is your first include of a non-standard file:
#include ”USART88.h”

I If you’re curious how I wrote them, the USART serial section
of the datasheet is a good place to start. Dive in!

I ... or just look at examples and monkey it.

Using USART88.h

What Do the Functions Do?

I #define BAUDRATE 9600

I initUART():
uses BAUDRATE to set up the baud rate
then some bits in the USART config register are set for stop
bits and parity

I transmitByte():
wait for the USART busy flag to become unset
load the data into the transmit buffer register
walk away, letting the hardware serial do the rest

I receiveByte():
once initialized, the hardware USART is always receiving
wait for the USART received-data flag to be set
return the data



Serial Interfacing

For the Big Computer

I Screen: for terminal emulation
screen /dev/ttyUSB0 or even screen /dev/ttyUSB0

9600

I Python: pyserial http://pyserial.sourceforge.net/ for
everything else

Serial Ideas

Things I Have Done With USART Serial

I Control 4x4x4 LED cube from my desktop

I Simple menu system for a logging accelerometer

I GPS datalogger

I Parallax RFID readers

I Hook up 2 AVRs (radio, IR LED, wires)

I Debug, debug, debug!

http://pyserial.sourceforge.net/


The End
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