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How do you build systems with >1G components?

Personal Computer:

Hardware & Software
Circuit Board:

≈8 / system

1-2G devices

Integrated Circuit:

≈8-16 / PCB

.25M-16M devices

Module:

≈8-16 / IC

100K devices

Cell:

≈1K-10K / Module

16-64 devicesGate:
≈2-16 / Cell
8 devices

Scheme for 

representing

information

MOSFET
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Concrete encoding of information
To this point we’ve discussed encoding information using 

bits. But where do bits come from?

If we’re going to design a machine that manipulates 

information, how should that information be physically 

encoded?

What makes a good bit?

- cheap (we want a lot of them)

- stable (reliable, repeatable)

- ease of manipulation 

(access, transform, combine, transmit, store)

He said to his friend, "If the British march
By land or sea from the town to-night,
Hang a lantern aloft in the belfry arch
Of the North Church tower as a signal light,--
One if by land, and two if by sea;
And I on the opposite shore will be,
Ready to ride and spread the alarm
Through every Middlesex village and farm,
For the country folk to be up and to arm."
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A substrate for computation
We can build upon almost any physical phenomenon

lanterns
elephants
engraved stone tablets
Billiard balls
sequences of amino acids
polarization of a photon

Wait!

Those last ones

might have potential...
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But, since we’re EE’s…
Stick with things we know about:

voltagesphase

currents frequency

This semester we’ll use voltages to encode information.  But the best choice 

depends on the intended application...

Voltage pros:

easy generation, detection

lots of engineering knowledge

potentially low power in steady state

Voltage cons:

easily affected by environment

DC connectivity required?

R & C effects slow things down

zero
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Representing information with voltage

Representation of each point (x, y) on a B&W Picture:

0 volts: BLACK

1  volt: WHITE

0.37 volts: 37% Gray

etc.

Representation of a picture:

Scan points in some prescribed

raster order… generate voltage

waveform

How much information
at each point?
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How do you build systems with >1G components?

Personal Computer:

Hardware & Software
Circuit Board:

≈8 / system

1-2G devices

Integrated Circuit:

≈8-16 / PCB

.25M-16M devices

Module:

≈8-16 / IC

100K devices

Cell:

≈1K-10K / Module

16-64 devicesGate:
≈2-16 / Cell
8 devices
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representing
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The Key to System Design
A system is a structure that is guaranteed to exhibit a 

specified behavior, assuming all of its components 

obey their specified behaviors.

How is this achieved?

Contracts!

Every system component will have clear obligations 

and responsibilities. If these are maintained we have every 

right to expect the system to behave as planned. If 

contracts are violated all bets are off.
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Why digital?

… because it keeps the contracts simple!

The price we pay for this robustness…

All the information that we transfer between

modules is only 1 crummy bit!

But, we get a guarantee of reliable processing. 

The Digital Panacea ...
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The Digital Abstraction

Real World

“Ideal”
Abstract World

Volts or
Electrons or
Ergs or Gallons

Bits

0/1

Keep in mind that the world is not digital, we would simply like to 

engineer it to behave that way. Furthermore, we must use real 

physical phenomena to implement digital designs!

Noise

Manufacturing
Variations



L02 - Digital Abstraction   136.004 – Fall 2002 9/10/02

Using Voltages “Digitally”
Key idea: don’t allow “0” to be mistaken for a “1” or vice versa

Use the same “uniform representation convention”, for every

component and wire in our digital system

To implement devices with high reliability, we outlaw “close calls” via a 

representation convention which forbids a range of voltages between 

“0” and “1”.

CONSEQUENCE: 

Notion of “VALID” and “INVALID” logic levels

volts

Valid
“0”

Valid
“1”Forbidden Zone

Invalid
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Review: Noise Margin Review: Noise Margin 

IN OUT IN OUT

0 1

1 0

V(x)

V(y)

VOH

VOL

VIH
V

IL

Slope = -1

Slope = -1

VOL
VOH

"1"

"0"

VOH
VIH

VIL
VOL

Undefined
Region

Large noise margins protect against various noise sources

NML= VIL -VOL
NMH= VOH -VIH

Truth Table
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MOS Technology: The NMOS SwitchMOS Technology: The NMOS Switch

D

G

S

gate

N+
P-substrate

N+

drainsource

RNMOSSwitch
Model

VT = 0.5V

VGS < VT

OFF RNMOS

VGS > VT

ON

Vs

NMOS ON when Switch Input is High
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NMOS Device Characteristics NMOS Device Characteristics 

0 0.5 1 1.5 2 2.5
0

VGS= 1.0 V

VDS(V)D

G VT = 0.5V

ID
MOS is a very non-linear. 

+ Switch-resistor model 
VGS sufficient for first order analysis.

-

1

2

3

4

5

6

D
(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

Resistive Saturation

 

x 10-4

I

S

polysilicon gate
body source drain

gate 

p 

p+ n+ n+ 

n+ 

inversion layer� gate oxide 
n channel 
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PMOS: The Complementary SwitchPMOS: The Complementary Switch

S

G

D

gate

P+
N-substrate

P+

drainsource

RPMOSSwitch
Model

VT = -0.5V

VGS > VT

OFF RPMOS

VGS < VT

ON

PMOS ON when Switch Input is Low

VDD
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The CMOS InverterThe CMOS Inverter

IN OUT

VDD
VDD

OUT

RPMOS

RNMOS

IN

IN

Switch Model

S

G

G

D

D

S

Rail-to-rail Swing in CMOS
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Inverter VTC: Load Line AnalysisInverter VTC: Load Line Analysis

IN OUT

VDD

S
G

D

D

S
G

IDn

Vout

Vin = 2.5

Vin  = 2

Vin = 1.5

Vin = 0

Vin = 0.5

Vin = 1

NMOS

Vin = 0

Vin = 0.5

Vin = 1Vin  = 1.5

Vin  = 2

Vin = 2.5

Vin = 1Vin = 1.5

PMOS

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

V
in

 (V)

V
ou

t(V
)CMOS gates have:

Rail-to-rail swing (0V to VDD)
Large noise margins
“zero” static power dissipation
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Common Logic GatesCommon Logic Gates

X
Y Z

Z
X
Y

X Y Z

0
0
1
1

0 1
1 1
0 1
1 0

NAND

Gate Symbol Truth-Table Expression

X Y Z

0
0
1
1

0 1
1 0
0 0
1 0

NOR

Z = X • Y

Z = X + Y

Z
X
Y

X Y Z

0
0
1
1

0 0
1 1
0 1
1 1

OR Z = X + Y

X
Y Z

X Y Z

0
0
1
1

0 0
1 0
0 0
1 1

AND
Z = X • Y
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Exclusive (N)OR GateExclusive (N)OR Gate

X
Y Z

Z
X
Y

X Y Z

0
0
1
1

0 0
1 1
0 1
1 0

X Y Z

0
0
1
1

0 1
1 0
0 0
1 1

XOR
(X ⊕ Y)

XNOR

(X ⊕ Y)

Widely used in arithmetic structures such as adders and multipliers

Z = X Y + X Y
X or Y but not both 

("inequality", "difference")

Z = X Y + X Y
X and Y the same 

("equality")
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Theorems of Boolean Algebra (I)Theorems of Boolean Algebra (I)

Elementary
1.   X + 0 = X 1D.   X • 1 = X
2.   X + 1 = 1 2D.   X • 0 = 0
3.   X + X = X 3D.   X • X = X
4. (X) = X
5.   X + X = 1 5D.   X • X = 0

Commutativity:
6.   X + Y = Y + X 6D.   X • Y = Y • X

Associativity:
7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)

Distributivity:
8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)

Uniting:
9.   X • Y + X • Y = X 9D.   (X + Y) • (X + Y) = X

Absorption:
10. X + X • Y = X 10D.   X • (X + Y) = X
11. (X + Y) • Y = X • Y 11D.   (X • Y) + Y = X + Y



L2: 6.111 Spring 2006 13Introductory Digital Systems Laboratory

Theorems of Boolean Algebra (II)Theorems of Boolean Algebra (II)

Factoring:
12. (X • Y) + (X • Z) = 12D.   (X + Y) • (X + Z) =                               

X • (Y + Z) X + (Y • Z)

Consensus:
13. (X • Y) + (Y • Z) + (X • Z) =  13D.  (X + Y) • (Y + Z) • (X + Z) =

X • Y + X • Z (X + Y) • (X + Z)

De Morgan's:
14. (X + Y + ...) = X • Y • ... 14D. (X • Y • ...) = X + Y + ...

Generalized De Morgan's:
15. f(X1,X2,...,Xn,0,1,+,•) =  f(X1,X2,...,Xn,1,0,•,+)

Duality
Dual of a Boolean expression is derived by replacing • by +, + by •, 0 

by 1, and 1 by 0, and leaving variables unchanged
f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)



L04 - Gates   136.004 - Fall 2002 9/17/02

There are only so many gates

There are only 16 possible 2-input gates

… some we know already, others are just silly

Do we need all of these gates?

I 
N 
P 
U 
T 
AB 

 
 
Z 
E 
R 
O 

 
 
 
A 
N 
D 

 
 
 
A
>
B 

 
 
 
 
 
A 

 
 
 
B
>
A 

 
 
 
 
 
B 

 
 
 
X 
O 
R 

 
 
 
 
O 
R 

 
 
 

N 
O 
R 

 
 
X 
N 
O 
R 

 
 
N 
O 
T 
‘B’ 

 
 
 
A
<=
B 

 
 
N 
O 
T 
‘A’ 

 
 
 
B
<=
A 

 
 
N 
A 
N 
D 

 
 
 
O 
N 
E 

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

 
 

Nope. After all, we describe them all using AND, OR, and NOT.

How many of 

these gates 

can be 

implemented 

using a single 

CMOS gate?
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Simple Example: One Bit AdderSimple Example: One Bit Adder

1-bit binary adder
inputs: A, B, Carry-in
outputs: Sum, Carry-out

A
B

Cin
Cout

S

A B Cin S Cout

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Sum-of-Products Canonical Form

S = A B Cin + A B Cin + A B Cin + A B Cin

Cout = A B Cin + A B Cin + A B Cin + A B Cin

Product term (or minterm)
ANDed product of literals – input combination for which output 
is true
Each variable appears exactly once, in true or inverted form (but 
not both)
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Simplify Boolean ExpressionsSimplify Boolean Expressions

Cout =  A B Cin + A B Cin + A B Cin + A B Cin

=  A B Cin +  A B Cin +  A B Cin + A B Cin + A B Cin +  A B Cin

=  (A + A) B Cin + A (B + B) Cin + A B (Cin +  Cin)

=  B Cin + A Cin + A B

=  (B + A) Cin +  A B

S = A B Cin + A B Cin + A B Cin + A B Cin

=( A B + A B )Cin +  (A B + A B) Cin

=(A ⊕ B) Cin + (A ⊕ B) Cin
= A ⊕ B ⊕ Cin
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SumSum--ofof--Products & ProductProducts & Product--ofof--Sum Sum 

short-hand notation form in terms of 3 variables

A B C minterms
0 0 0 A  B  C m0
0 0 1 A  B  C m1
0 1 0 A  B  C m2
0 1 1 A  B  C m3
1 0 0 A  B  C m4
1 0 1 A  B  C m5
1 1 0 A  B  C m6
1 1 1 A  B  C m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7

canonical form ≠ minimal form
F(A, B, C) = A B C + A B C + AB C + ABC + ABC  

= (A B  + A B + AB  + AB)C + ABC 
= ((A  + A)(B  + B))C + ABC 
= C + ABC = ABC  + C = AB + C

Product term (or minterm): ANDed product of literals – input combination for which output is true

F = + A B C+ A B C + A B C + ABCA B C

A B C maxterms
0 0 0 A + B + C M0
0 0 1 A + B + C M1
0 1 0 A + B + C M2
0 1 1 A + B + C M3
1 0 0 A + B + C M4
1 0 1 A + B+ C M5
1 1 0 A + B +C M6
1 1 1 A +B + C M7

short-hand notation for maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B  + C) (A  + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B  + C) (A  + B + C)

= (A + B + C) (A + B  + C)
(A + B + C) (A  + B + C)

= (A + C) (B + C)

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false
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KarnaughKarnaugh MapsMaps

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Alternative to truth-tables to help visualize adjacencies
Guide to applying the uniting theorem - On-set elements with only one 
variable changing value are adjacent unlike in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

A 
B 0 1 

0 

1 

0 

1 

2 

3 

0 

1 

2 

3 

6 

7 

4 

5 

AB 
C 

0 

1 

3 

2 

4 

5 

7 

6 

12 

13 

15 

14 

8 

9 

11 

10 

A 

B 

AB 
CD 

A 

00 01 11 10 

0 

1 

00 01 11 10 

00 

01 

11 

10 
C 

B 

D 

2-variable
K-map

3-variable
K-map

4-variable
K-map
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KK--Map ExamplesMap Examples

Cout = F(A,B,C) = 

A  B A 

B 

Cin 00 01 11 10 

0 

1 

0 

0 

0 

1 

1 

1 

0 

1 

AB 
C 

A 

00 01 11 10 

0 

1 

0 

0 

0 

0 

1 

1 

1 

1 

B 

F(A,B,C) = Σm(0,4,5,7)

F = 

00 C 
AB 

01 11 10 

1 0 0 1 

1 1 0 0 

A 

B 

0 

1 

00 C 
AB 

01 11 10 

0 1 1 0 

0 0 1 1 

A 

B 

0 

1 

F' simply replace 1's with 0's and vice versa

F'(A,B,C) = Σm(1,2,3,6)

F' = 
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Four Variable Four Variable KarnaughKarnaugh MapMap

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F = C  +  A  B D  +  B  D 

K-map Corner Adjacency
Illustrated in the 4-Cube

Find the smallest number
of the largest possible

subcubes that cover the
ON-set

AB 
00 01 11 10 

1 0 0 1 

0 1 0 0 

1 1 1 1 

1 1 1 1 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

0011 

D 

0010 

0000 

0111 

0110 

0001 C 

A 

B 0100 
1000 

1100 

1101 

1111 

1110 

1001 

1011 

1010 

0101 
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KK--Map Example: DonMap Example: Don’’t Carest Cares

F(A,B,C,D) = Σm(1,3,5,7,9) + Σd(6,12,13)

F = A D  +  B  C  D   w/o don't cares

F = C  D  +  A  D   w/ don't cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do soDon't Cares can be treated as 1's or 0's if it is advantageous to do so

By treating this DC as a "1", a 2-cube
can be formed rather than one 0-cube

AB 
00 01 11 10 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

00 

01 

11 

10 
C 

CD 

A 

D 

B AB 
00 01 11 10 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

In PoS form: F = D (A  + C)

Equivalent answer as above, 
but fewer literals
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Due to unavoidable delays…
Propagation delay (tPD):

An UPPER BOUND on the delay from valid inputs to valid 
outputs.

GOAL:
minimize
propagation
delay!

ISSUE:
keep 
Capacitances
low and
transistors
fast

VOUT < tPD< tPD

VIN

VOL

VOH

VIL

VIH

time constant
    τ = RPD•CL

time constant
    τ = RPU•CL
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Contamination Delay
an optional, additional timing spec

INVALID inputs take time to propagate, too...

CONTAMINATION DELAY, tCD

A LOWER BOUND on the delay from any invalid input to an invalid output

VOUT > tCD
> tCD

VIN

VOL

VOH

VIL

VIH

Do we really need tCD?

Usually not… it’ll be 

important when we 

design circuits with 

registers (coming 

soon!)

If tCD is not specified, 

safe to assume it’s 0.

Do we really need tCD?

Usually not… it’ll be 

important when we 

design circuits with 

registers (coming 

soon!)

If tCD is not specified, 

safe to assume it’s 0.
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The Combinational Contract

A B
A  B

0  1
1  0

tPD propagation delay
tCD contamination delay

A

B

Must be ___________

Must be ___________

Note:
1. No Promises during 
2. Default (conservative) spec: tCD = 0

< tPD

> tCD
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Example: Timing Analysis

If NAND gates have a tPD = 4nS and tCD = 1nS

B

C

A

Y

tPD = _______ nS

tCD = _______ nS

12

2

tPD is the maximum cumulative 

propagation delay over all paths 

from inputs to outputs

tCD is the minimum cumulative 

contamination delay over all 

paths from inputs to outputs
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Oh yeah… one last issue 

Recall the rules for combinational devices:

Output guaranteed to be valid when all inputs have been 

valid for at least tPD, and, outputs may become invalid no 

earlier than tCD after an input changes!

Many gate implementations--e.g., CMOS—

adhere to even tighter restrictions.

A

B

Z
tPD

tCD

A
ZB

A

B

Z
tPD

tCD

0

0

1

1

0

1

0

1

1

0

0

0

A B Z

NOR:



L2: 6.111 Spring 2006 26Introductory Digital Systems Laboratory

HazardsHazards

Figure by MIT OpenCourseWare.

A

C

B

A = B = 1

C
1
2
F

Gate delay
Glitch

F

Static hazards: Consider this function:

Implemented with MSI gates:

'00
'00

'00
'00

A

C

B

F

2

1

C
AB

00 01 11 10

0 0 0

0 0

1 1

111

F = A * C + B * C
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Fixing HazardsFixing Hazards

In general, it is difficult to avoid hazards – need a robust
design methodology to deal with hazards.  

The glitch is the result of timing differences 
in parallel data paths. It is associated with the
function jumping between groupings or product
terms on the K-map. To fix it, cover it up with
another grouping or product term!

Figure by MIT OpenCourseWare.

C
AB

00 01 11 10

0 0 0

0 0

1 1

111

A

C
B

F

F = A * C + B * C + A * B
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Lets design stuff!
Where do we start?

A

B

6.004
Gates

F = A xor B

We can build ANY

Combinational Device…

can’t we????

We have a bag of gates.

We have a spec.

What do we do?

Did I mention we 

have gates?

We need

… a systematic approach for 

designing logic
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We can make most gates out of others

How many different gates do we really need?

AB Y
00 0
01 1
10 0
11 0

B>A

A
B

y

AB Y 
00 0 
01 1 
10 1 
11 0 

 

XOR
A
B

Y

A
B

Y
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One will do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

=
=

=

=
=

=
Is that really
an OR gate?
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Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

A1

A3 A4 AN

A2

A
B

C

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1
tcd = 0

tpd = O( ___ ) -- WORST CASE.

output = 1
iff number of 1s
input is ODD
(“ODD PARITY”)

Can we compute N-input XOR faster?

N
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I think that I shall never see
a circuit lovely as...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.

Question: Can EVERY N-Input Boolean function be 
implemented as a tree of 2-input gates?

log N

log N

2122
2log2N
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Are Trees Always Best?
Alternate Plan: Large Fan-in gates

� N pulldowns with complementary pullups

� Output HIGH if any input is HIGH = “OR”

� Propagation delay: O( ____ )

since each additional MOSFET adds

...

N

N

tpd

O(log N)

O(N)

~4

Don’t be mislead by the “big O” stuff… 

the constants in this case can be much 

smaller… so for small N this plan might 

be the best.

C
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Here’s a Design Approach
1) Write out our functional spec as a 

truth table

2) Write down a Boolean expression for 
every ‘1’ in the output

3) Wire up the gates, call it a day, and 
declare success!

This approach will always give us 
Boolean expressions in a particular 
form: SUM-OF-PRODUCTS

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

CBAACBBACABCY +++=
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Straightforward Synthesis
We can implement 

SUM-OF-PRODUCTS

with just three levels of

logic.

INVERTERS/AND/OR

Propagation delay --

No more than 3 gate delays 

(ignoring fan-in)

A
B
C

A
B
C

A
B
C

A
B
C

Y
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