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Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio
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Audio

What is sound?

I Sound: repetitive compression/decompression of the air
around you

I Speaker: has an electromagnet inside – moves a cone forward
and back depending on current running through it

I Our simple sound plan: Use the 5v/0v output we know from
last week to make current flow through a speaker and make
noise

I Pleasant audio frequencies from 30 Hz to 4200 Hz:
33mS to 283µS per cycle = 16mS to 140µS on/off times
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Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...
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Initialization for Input

Too easy

I To initialize for output set bit to one
DDRx = BV(whatever)

I For input, want to set the bit to zero instead.

I But zero is the default value. Done!
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Initialization for Input II

One wrinkle: Initialize a pullup

I A pullup resistor ties the input pin to 5v (internally) when it’s
not pulled low from outside

I Often want a pullup with input

I Why? Simplest input circuit is a switch from pin to ground

I AVR’s PORTn does double-duty.
In output mode, controls output.
In input mode, selects the pullup

I So often set PORTn to one to enable the pullup:
PORTB |= BV(PB3);
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Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!
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The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing
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Debouncing

Patience!

I The trick is to see if the button is still pressed some time after
it was first pressed

I Couple ways to do this:
if you’ve already got a timing loop, just check back later



Debouncing

Patience!

I The trick is to see if the button is still pressed some time after
it was first pressed

I Couple ways to do this:
if you’ve already got a timing loop, just check back later



Outline

Review and Today’s Setup

Binary (logic) Input

Debouncing

Analog Input



The End

Outline


	Review and Today's Setup
	Binary (logic) Input
	Debouncing
	Analog Input

