
Intro to Microcontrollers
Class 3: Input: Buttons and Analog-to-Digital Conversion

September 29, 2008



Outline

Review and Today’s Setup

Binary (logic) Input

Debouncing

Analog Input



Outline

Review and Today’s Setup

Binary (logic) Input

Debouncing

Analog Input



Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio



Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio



Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio



Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio



Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio



Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio



Review

Show and Tell

I Anyone make anything cool they want to show?

Output

I Learned how to set up pins for output

I How to write to them using bit-math

I Did a little PWM at the end

I So far, done LED stuff

I Today, let’s do very simple audio



Audio

What is sound?

I Sound: repetitive compression/decompression of the air
around you

I Speaker: has an electromagnet inside – moves a cone forward
and back depending on current running through it

I Our simple sound plan: Use the 5v/0v output we know from
last week to make current flow through a speaker and make
noise

I Pleasant audio frequencies from 30 Hz to 4200 Hz:
33mS to 283µS per cycle = 16mS to 140µS on/off times



Audio

What is sound?

I Sound: repetitive compression/decompression of the air
around you

I Speaker: has an electromagnet inside – moves a cone forward
and back depending on current running through it

I Our simple sound plan: Use the 5v/0v output we know from
last week to make current flow through a speaker and make
noise

I Pleasant audio frequencies from 30 Hz to 4200 Hz:
33mS to 283µS per cycle = 16mS to 140µS on/off times



Audio

What is sound?

I Sound: repetitive compression/decompression of the air
around you

I Speaker: has an electromagnet inside – moves a cone forward
and back depending on current running through it

I Our simple sound plan: Use the 5v/0v output we know from
last week to make current flow through a speaker and make
noise

I Pleasant audio frequencies from 30 Hz to 4200 Hz:
33mS to 283µS per cycle = 16mS to 140µS on/off times



Audio

What is sound?

I Sound: repetitive compression/decompression of the air
around you

I Speaker: has an electromagnet inside – moves a cone forward
and back depending on current running through it

I Our simple sound plan: Use the 5v/0v output we know from
last week to make current flow through a speaker and make
noise

I Pleasant audio frequencies from 30 Hz to 4200 Hz:
33mS to 283µS per cycle = 16mS to 140µS on/off times



Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...



Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...



Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...



Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...



Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...



Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...



Simple Organ

Setting up for sound

I So want to toggle a pin every 140µS to 16mS

I How?

I Make a loop that takes a fixed amount of time,
toggle every n’th time through

I See scale.h – a bunch of macros to help make musical notes

I Middle C: Around 2mS on/off times.
2mS / 200 = 10µS per loop

I Should just work if we’re not doing too much math

I There is a better way to do it with timers, next class...



Outline

Review and Today’s Setup

Binary (logic) Input

Debouncing

Analog Input



Initialization for Input

Too easy

I To initialize for output set bit to one
DDRx = BV(whatever)

I For input, want to set the bit to zero instead.

I But zero is the default value. Done!



Initialization for Input

Too easy

I To initialize for output set bit to one
DDRx = BV(whatever)

I For input, want to set the bit to zero instead.

I But zero is the default value. Done!



Initialization for Input

Too easy

I To initialize for output set bit to one
DDRx = BV(whatever)

I For input, want to set the bit to zero instead.

I But zero is the default value. Done!



Initialization for Input II

One wrinkle: Initialize a pullup

I A pullup resistor ties the input pin to 5v (internally) when it’s
not pulled low from outside

I Often want a pullup with input

I Why? Simplest input circuit is a switch from pin to ground

I AVR’s PORTn does double-duty.
In output mode, controls output.
In input mode, selects the pullup

I So often set PORTn to one to enable the pullup:
PORTB |= BV(PB3);



Initialization for Input II

One wrinkle: Initialize a pullup

I A pullup resistor ties the input pin to 5v (internally) when it’s
not pulled low from outside

I Often want a pullup with input

I Why? Simplest input circuit is a switch from pin to ground

I AVR’s PORTn does double-duty.
In output mode, controls output.
In input mode, selects the pullup

I So often set PORTn to one to enable the pullup:
PORTB |= BV(PB3);



Initialization for Input II

One wrinkle: Initialize a pullup

I A pullup resistor ties the input pin to 5v (internally) when it’s
not pulled low from outside

I Often want a pullup with input

I Why? Simplest input circuit is a switch from pin to ground

I AVR’s PORTn does double-duty.
In output mode, controls output.
In input mode, selects the pullup

I So often set PORTn to one to enable the pullup:
PORTB |= BV(PB3);



Initialization for Input II

One wrinkle: Initialize a pullup

I A pullup resistor ties the input pin to 5v (internally) when it’s
not pulled low from outside

I Often want a pullup with input

I Why? Simplest input circuit is a switch from pin to ground

I AVR’s PORTn does double-duty.
In output mode, controls output.
In input mode, selects the pullup

I So often set PORTn to one to enable the pullup:
PORTB |= BV(PB3);



Initialization for Input II

One wrinkle: Initialize a pullup

I A pullup resistor ties the input pin to 5v (internally) when it’s
not pulled low from outside

I Often want a pullup with input

I Why? Simplest input circuit is a switch from pin to ground

I AVR’s PORTn does double-duty.
In output mode, controls output.
In input mode, selects the pullup

I So often set PORTn to one to enable the pullup:
PORTB |= BV(PB3);



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}

I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Reading the Input

Reading the input register

I Input values in the PINx register

I Can read them like readIn = PINB;

I readIn will contain an 8-bit number, each bit corresponding
to the voltage state of all 8 of its pins.

Reading one pin: the most common case

I PIND & BV(PD3);

I If PD3 has more than 1.25v on it, we’ll get 00001000

I If PD3 has less than 1.25v on it, we’ll get 00000000

I Can use as a test of pin state: if(x){...}
I So let’s go to the simpleOrgan project to see it in action

I Remember negative logic!



Outline

Review and Today’s Setup

Binary (logic) Input

Debouncing

Analog Input



The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing



The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing



The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing



The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing



The Real World

Switching Noise

I In reality, switches make/break contact a bunch of times as
you press it

I Two pieces of metal touching, bending, with different
resistance all over

I If you’re trying to make a per-button-press device, this can
cause troubles

I Symptom: Get multiple presses for what you thought was a
single press

I Solution: Debouncing



Debouncing

Patience!

I The trick is to see if the button is still pressed some time after
it was first pressed

I Couple ways to do this:
if you’ve already got a timing loop, just check back later



Debouncing

Patience!

I The trick is to see if the button is still pressed some time after
it was first pressed

I Couple ways to do this:
if you’ve already got a timing loop, just check back later



Outline

Review and Today’s Setup

Binary (logic) Input

Debouncing

Analog Input



The End

Outline


	Review and Today's Setup
	Binary (logic) Input
	Debouncing
	Analog Input

