Intro to Microcontrollers Class 2: Output: Bit Math, Cylon Eyes, and PWM

September 22, 2008

Outline

Pins, Ports, and Their Registers

Bit Math and Cylon Eyes

PWM and LED Dimming

Outline

Pins, Ports, and Their Registers

Bit Math and Cylon Eyes

PWM and LED Dimming

Hello World Example

Blinkies!

- Last class, showed an example that turned a pin on and off
- Sections of the C code: preamble/includes/defines, function definitions (didn't have any), main function (chip initialization and endless loop)
- The main loop twiddled a bit back and forth in a memory register, and that made Vcc and GND volts appear on a particular pin.
- But let's flesh that all out a little more...

Registers

Special memory locations

- Usually we think of memory as being a place to store info
- In micros, some special memory regions change the way the chip behaves: Registers
- DDRx register from initialization stage of the demo blinky program
- Writing a "one" to a bit in the DDRx register sets up a corresponding pin for output
- There's a similar mapping from the PORTx register to the output of the pins: writing a "one" to a bit in PORTx sets the corresponding pin at Vcc, "zero" to GND.
- These two registers (per port) control initialization of the pins as input/output and allow you to set the voltage on the pins

Addressing the Pins

Writing bits to registers

- So, say we're working on PORTD, and we want to set pin PD2 to 5v (to light up a LED)
- ► Write a 1 in the 2 place
- Want something like: PORTD = 00000100
- Unfortunately, no direct binary access, but we can figure out the value in decimal or hexadecimal
- ▶ 00000100 = 4 or 0x0004
- So PORTD = 4; will do it

Addressing the Pins II

Writing two bits to registers

- Now say we want PD2 and PD3 both on
- ▶ PORTD = 00001100
- ▶ PORTD = 12; or PORTD = 0x000b; will work
- Quick, what's 11001101?)
- Not readable or easy to manipulate; hard to calculate
- ► Last class, I used the _BV() macro
- This class, we'll build up to it

Outline

Pins, Ports, and Their Registers

Bit Math and Cylon Eyes

PWM and LED Dimming

Using Shifts

Quiz:

- Start with 10: 00001010
- ▶ What's (10 >> 1)? 00000101 (10/2 = 5)
- ▶ What's (10 >> 2)? 00000010 (10/4 = 2)
- ▶ What's (10 << 4)? 10100000 (10 * 16 = 160)
- ▶ What's (10 << 5)? 01000000 (10 * 32 = 320 = 64)

Practical examples:

- PORTD = (1 << 3);</pre>
- PORTD = (1 << PD3);</pre>
- PORTD = (1 << (1+2));</pre>
- ▶ j = 3; PORTD = (1 << j);
- j = 3; PORTD = _BV(j);

Set Two Pins

Addition:

- Say we want PD3 and PD4 both on
- Add them together?
- PORTD = _BV(PD3) + _BV(PD4); will work 00000100
- After all: + 00001000
 = 00001100
- Works if you're just setting the port using PORT = something;

One Last Part...

...then Cylon Eyes

- So we know how to turn on bits, and how to turn them off
- How do we make cylon eyes?
- Start with light 0 on. Turn off the 0th, turn on the 1st, pause turn off the 1st, turn on the 2nd, pause etc
- PORTD &= ~_BV(PDO); PORTD |= _BV(PD1); delay PORTD &= ~_BV(PD1); PORTD |= _BV(PD2); delay etc.
- > {PORTD &= ~_BV(i) ; PORTD |= _BV(i+1); delay }
- And make i range from 0 to 7 and back again (being very careful about endpoints)

Basic Looping

The For loop

- ▶ for(i=0; i < 7; i = i + 1){...}</pre>
- Repeats the block in parentheses a bunch of times.
- ► First time, i = 0.
- Then it checks if i < 7.
 If not, it skips the block and moves on.
 If so, it executes the next command and then the block.
- So in our case, it executes the block with i = 0, 1, 2, 3, 4, 5, 6and then is done.
- for(i=7; i > 0; i = i 1){...} and a different block
 will bring it back down
- ▶ i=7,6,5,4,3,2,1

Cylon Eyes Setup

In words:

- We want 8 LEDs plugged in, one per pin in PORTD
- Ideally, we'd use a current-limiting resistor per LED
- If you haven't soldered up blinkenlights, there's a nice cheat: connect one resistor from the ground pin to the ground bus then each LED from AVR pin to the "ground" bus

AVR Mega 48 Pinouts

Outline

Pins, Ports, and Their Registers

Bit Math and Cylon Eyes

PWM and LED Dimming

Pulse-Width Modulation

Making analog from digital

- So we can turn lights on and off...what about dimming?
- The trick is to turn them off so quickly the eye can't see
- ▶ How? Easy, actually. Can do it just with for loops.
- Make a big loop. Turn on the light at the beginning of the loop, turn it off somewhere in the middle.

PWM Code

Two Examples

- introPWM.c is basic: just keeps the LED at a given brightness
- fadingPWM.c is more fun: fades the LED in and out
- ► Homework: Crossfading cylon eyes
- Hint: can use same outer loop to fade one light in while the other fades out

The End		
 Outline 		