Noisemaker Workshop Attack of the Oscillator

April 22, 2009

Outline

Intro

Electronics Background

Oscillation

Attack of the Oscillator

Outline

Intro

Electronics Background

Oscillation

Workshop Overview

What's the plan?

- Today: Oscillators and a basic amplifier.
 Driving speakers with interesting noise.
- Next week: Modulation. Making stranger noises.
- Third week: Sequencers and rhythm generators. Architecting the noise.
- Fourth week: Open lab. Special topics. Digital oscillators? Voltage control? Serious modular synthesis?

Today: Building Simple Oscillators

What not to expect

- Not building what you probably think of as a synthesizer
- Not making something musical (yet).
 (If by "musical" you mean sound that's based on melodies.)
- ► No keyboards

What to expect

- Many of the basic ideas of serious 1970's analog synthesis, in a stripped-down form
- Some electronics
- A lot of experimentation
- ▶ Bugs. Hardware bugs galore.

Quick Demo

Outline

Intro

Electronics Background

Oscillation

Electricity as Water

Two slide overview

 Electrical pressure (that can be used to get stuff done) is like water pressure.

Voltage = Pressure

- Electrical current (flowing electricity) is like flowing water.
 Current = Current
- Skinny pipes reduce the flow of water and the pressure downstream of the skinny pipe.
 Resistor = Skinny Pipe
- Pumps increase water pressure (and thus flow, through a pipe of given size).
 (Voltage) Amplifier = Pump

Outline
Intro
Electronics Backgrou
Oscillation

Oscillation...

... brought to you by Hysteresis

- Hysteresis is the property of devices that turn on at one point, but off at a different point
- Thermostats have hysteresis: Set for 65 degrees, turn on at 63 degrees, turn off at 67 degrees
- What if it didn't have hysteresis?
- (Your heater/thermostat system is a very low frequency oscillator!)
- Like thermostat, many digital circuits use hysteresis
- "On" is a voltage above 5 * 2/3 volts.
 "Off" is a voltage below 5 * 1/3 volts.
- ▶ In between? Stays in whichever state it was in last.

Oscillation

Hysteresis and Feedback

- Thermostat controls heater. Heater heats air. Air temperature controls thermostat. Thermostat controls heater...
- Negative feedback: heating the air turns off the heater, vice versa
- This negative feedback plus hysteresis keeps the temperature bouncing up and down between the two temperature set points
- We're going to do the same with electricity.
- Inverting amplifier with hysteresis (inverting is the negative feedback part)

Oscillator Chip

74HC14: Hex Inverter with Schmitt Trigger

- ► Hex = 6
- ▶ Inverter = Inverting amplifier. Given 5v input, sends 0v out.
- Amplifier is like a pump. This one's a pressure-controlled pump.
- Schmitt Trigger is the *hysteresis*.
- Input > 5v * 2/3: input is read as high, so output goes low (0v)
- Input < 5v * 1/3: input is read as low, so output goes high (5v)
- In-between: doesn't change state

Oscillator

The plan

- Use one inverter from the HC14
- Feed its output back into its input
- Hysteresis will make sure that it stays between 5*2/3 and 5*1/3 volts
- Need to slow it down: skinny pipe and some way to store up the water for a while

The Circuit

How it works

- Imagine input starts low, output high
- Current flows through resistor, pushes on capacitor
- As capacitor gets more and more displaced, it pushes back more and more
- Eventually the pressure/voltage gets enough to trip the input high
- Then the output goes low
- Then current flows through the resistor in the opposite direction
- This relieves pressure on the capacitor
- ► Until...

Buffering

So can we just hook it up?

- Not yet!
- If we put the speaker in the circuit, all of our current would just flow out the speaker
- Use an intermediate stage: a buffer
- Used LM386 amplifier as buffer
- (Note: This is not ideal. In the future, I'll just use a stage from the 74HC14 or maybe a 74HC04.)
- Then to the speaker?

Output Capacitor

Now to the speaker

- ▶ Want to limit the current flowing through the speaker
- But want changes in pressure to pass through (to make sound)
- ► The job for a big capacitor
- ▶ Remember: stretchy rubber membrane in a pipe

► Play!

The End			
Outline			

The End