
Chapter 2

The Backprop Algorithm

Copyright 1995 by Donald R. Tveter, drt@christianliving.net. Commercial Use

Prohibited

2.1 Evaluating a Network

Figure 2.1 shows a simple back-propagation network that computes the exclusive-or

(xor) of two inputs, x and y. The xor function, z = xor(x; y) is de�ned as follows:

x y z

1 0 1

0 0 0

0 1 1

1 1 0

In this �gure the circles represent neurons or units or nodes that are extremely

simple analog computing devices. The numbers within the circles represent the

activation values of the units. The main nodes are arranged in layers. In this case

there are three layers, the input layer that contains the values for x and y, a hidden

layer that contains one node, h and an output unit that gives the value of the output

value, z. The hidden layer is so-named because the network can be regarded as a

black box with inputs and outputs that can be seen but the hidden units cannot be

seen. There are two other units present called bias units whose values are always

1.0. For now we are not going to claim that they are part of any one layer. Most

of the time when a network is drawn the bias units are not even shown. When

other writers want to emphasize the presence of a bias unit there is often only one

unit shown in the diagram of the network and that one unit is used for the entire

network. This is probably the only example where we will show the bias units at all.

The lines connecting the circles represent weights and the number beside a weight

is the value of the weight. Much of the time back-propagation networks only have
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output layer.
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bh (bias unit) input layer.
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-2.76

-3.29

10.9

-4.95 -4.95

7.1 7.1

Figure 2.1: A three-layer network to solve the xor problem with weights produced

by back-propagation.

connections within adjacent layers however this one has two extra connections that

go directly from the input units to the output unit. In some problems, like xor these

extra input-output connections make training the network much faster. Networks

are usually just described by the number of units in each layer so the network in

2.1 can be described as a 2-1-1 network with extra input-output connections. In

this report this will be shortened to 2-1-1-x.

To compute the value of the output unit, z, we place values for x and y on the

input layer units. Let these values be 1:0 and 0:0 as in �gure 2.1. First we compute

the value of the hidden layer unit, h. The �rst step of this computation is to look

at each lower level unit and the bias unit that is connected to the hidden unit. For

each of these connections, �nd the value of the unit and multiply by the weight and

sum all the results. The calculations give:

1:0 � 7:1 = 7:10

1:0 � �2:76 = �2:76

0:0 � 7:1 = 0:00

sum = 4:34

In some neural networks we might just leave the activation value of the unit to be

4.34. In this case we would say that we are using the linear activation function,

however backprop is at its best when this value is passed to certain types of non-

linear functions. The most commonly used non-linear function is:

v =
1

1 + e�s

where s is the sum of the inputs to the neuron and v is the value of the neuron.

Thus, with s = 4.34, v = 0.987. This particular function will be called the standard
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Figure 2.2: A plot of the most commonly used back-propagation activation function,

1=(1 + e
�s)

sigmoid in this manual. Quite often it is called the logistic function. The general

function used to compute the value of a neuron can be called the activation function,

squashing function or transfer function. The calculations for the output unit, z are:

1:000 � �4:95 = �4:95

0:000 � �4:95 = 0:00

0:987 � 10:9 = 10:76

1:000 � �3:29 = �3:29

sum = 2:52

v = 0:91

Of course, 0.91 is not quite 1 but for this example it is close enough. When using

this particular activation function for a problem where the output is supposed to

be a 0 or 1 getting the output to within 0.1 of the target value is a very common

standard but other people may want to get to closer than this while others don't

want to get even this close. With this particular activation function it is actually

somewhat hard to get very close to 1 or 0 because the function only approaches

1 and 0 as the input to the function approaches 1 and �1. Figure 2.2 shows a

graph of the function with the y direction stretched with respect to the x direction.

There are other activation functions you can use that make it easier to get closer to

the exact targets. The other values the network computes for the xor function are:

x y z

1 0 1.00

0 0 0.08

0 1 0.91

1 1 0.10

The formulas for computing the activation value for a neuron, j can be written

more concisely as follows. Let the activation value for neuron j be oj . Let the
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Figure 2.3: To start the training the weights will start at 0. The input unit values

are 1 for x and 0 for y. The units h and z are then computed to be 0.5. The target

for z is 1.0 and the error on this unit is then 0.5.

activation function be the general function, f . Let the weight between neuron j

and neuron i be wij . Let the net input to neuron j be netj , then

netj =
X

i=1;n

wijoi (2.1)

where n is the number of units feeding into unit j and

oj = f(netj) (2.2)

2.2 Training a Network

Figure 2.3 shows a 2-1-1-x xor network before it has been trained to compute the

xor function. In this example the network weights will all start out at 0 (a bad idea

in general but it works here) and the training process will try to adjust the weights

so that the answers come out right. It will work as follows. First put one of the

patterns to be learned on the input units. Second, �nd the values for the hidden

unit and output unit. Third, �nd out how large the error is on the output unit.

Fourth, use one of the back-propagation formulas to adjust the weights leading into

the output unit. The idea is to try to make the answer come out just a little bit

closer to the right answer. Fifth, use another formula to �nd out errors for the

hidden layer unit. Sixth, adjust the weights leading into the hidden layer unit via

another formula. Repeat steps one thru six for the second, third and fourth xor

patterns. Even after all these changes to the weights the answers will only be a

little closer to the right answers and the whole process has to be repeated many
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times. Each time all the patterns in the problem have been used once we will call

that an iteration although often other people call this an epoch.

We will now look at the formulas for adjusting the weights that lead into the

output units of a back-propagation network. The actual activation value of an

output unit, k, will be ok and the target for unit, k, will be tk. First of all there is

a term in the formula for �k, the error signal :

�k = (tk � ok)f
0(netk): (2.3)

where f 0 is the derivative of the activation function, f . If we use the usual activation

function:
1

1 + e�netk

the derivative term is:

ok(1� ok): (2.4)

The formula to change the weight, wjk between the output unit, k, and unit j is:

wjk  wjk + ��koj (2.5)

where � is some relatively small positive constant called the learning rate. With

the network in 2.3 with � = 0.1 we have:

�z = (1� 0:5) � 0:5 � (1� 0:5) = 0:125

wzx  0 + 0:1 � 0:125 � 1 = 0:0125

wzy  0 + 0:1 � 0:125 � 0 = 0

wzh  0 + 0:1 � 0:125 � 0:5 = 0:00625

wzbz
 0 + 0:1 � 0:125 � 1 = 0:0125

The formula for computing the error �j for a hidden unit, j, is:

�j = f
0(netj)

X

k

�kwkj :

The k subscript is for all the units in the output layer however in this example there

is only one unit. In the example, then:

�h = oh(1� oh)�zwzh

�h = 0:5 � (1� 0:5) � 0:125 � 0:0:00625 = 0:000195313:

The weight change formula for a weight, wij that goes between the hidden unit, j

and the input unit, i is essentially the same as before:

wij  wij + ��joi:
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Figure 2.4: When backprop starts at point A and tries to mimimize the error you

hope the process with stop when it hits the low point at B however you could get

unlucky and hit the not so low point at C. The low point is a global minimum and

the not so low point is a local minimum.

The new weights will be:

whx  0 + 0:1 � 0:000195313 � 1 = 0:000195313

why  0 + 0:1 � 0:000195313 � 0 = 0

whbh
 0 + 0:1 � 0:000195313 � 1 = 0:0000195313

The activation value for the output layer will now be 0.507031. If we now do the

same for the other three patterns the output will be:

x y zdesired zactual

1 0 1 0.499830

0 0 0 0.499893

0 1 1 0.499830

1 1 0 0.499768

Sad to say but to get the outputs to within 0.1 requires 20,862 iterations, a very

long time especially for such a short problem.

Fortunately there are a large number of things that can be done to speed-up

the training and the time to do the xor problem can be reduced to around 12-20

iterations or so. The very simplest thing to do is to increase the learning rate, �.

The following table shows how many iterations are used for di�erent values of �.

� iterations

0.1 20,862

0.5 2,455

1.0 1,060

2.0 480

3.0 (fails)

Another unfortunate problem with backprop is that when the learning rate is too

large the training can fail as it did in the case when � = 3.0. Here, after 10,000
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iterations the results were:

x y zdesired zactual

1 0 1 0.994

0 0 0 0.009

0 1 1 0.994

1 1 0 1.000

where the output for the last pattern is 1 not 0. The geometric interpretation of this

problem is that when the network tries to make the error go down the network may

get stuck in a valley that is not the lowest possible valley. For instance, suppose the

error landscape is like the one shown in �gure 2.4. There is one valley on the left

that solves the problem but there is a shallower valley on the right that only gets

some of the output values correct. This shallower valley is called a local minimum

and the valley that gives the perfect results is called a global minimum, that is the

best minimum that you can �nd. Once you go down into the shallow valley, if there

is no path downhill that will get you to the deeper valley you are permanently stuck

with a bad answer. There are ways to break out of a local minimum but in real

world problems you never know when you've found the best (global) minimum, you

only hope to get a very deep minimum.

The above method for changing the weights is actually a little less orthodox

than most Mathematicians can accept. The problem is that when we used the

�rst pattern we immediately changed the weight wzh and used the changed weight

to compute �h. Many Mathematicians regard this as wrong but it works anyway.

Instead they normally say that the weight changes can be computed but none of

them should take e�ect until all the weight changes have been computed. The

calculations then work as follows. First the error for the output unit is computed.

The formula is:

�k = (tk � ok)ok(1� ok)

and the calculation is:

�z = (1� 0:5) � 0:5 � (1� 0:5) = 0:125:

Next the weight changes for units leading into the output layer are done with the

formula:

�wjk = ��koj

giving the calculations:

�wzx = 0:1 � 0:125 � 1 = 0:0125

�wzy = 0:1 � 0:125 � 0 = 0

�wzh = 0:1 � 0:125 � 0:5 = 0:00625

�wzbz
= 0:1 � 0:125 � 1 = 0:0125
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Now the error for the hidden layer unit is computed using the formala:

�j = oj(1� oj)
X

k

�kwkj

and this gives the calculation:

�h = 0:5 � (1� 0:5) � 0:125 � 0 = 0

The weight change formula is again:

�wij = ��joi

This gives the calculations:

�whx = 0:1 � 0 � 1 = 0

�why = 0:1 � 0 � 0 = 0

�whbh
= 0:1 � 0 � 1 = 0

Now the weight changes are applied:

wzx  wzx +�wzx = 0 + 0:0125 = 0:0125

wzy  wzy +�wzy = 0 + 0 = 0

wzh  wzh +�wzh = 0 + 0:00625 = 0:00625

wzbz
 wzbz

+�wzbz
= 0 + 0:0125 = 0:0125

whx  whx +�whx = 0 + 0 = 0

why  why +�why = 0 + 0 = 0

whbh
 whbh

+�whbh
= 0 + 0 = 0

In this case it requires 25,496 iterations to get to within 0.1 of the targets. In fact

the \wrong" method is sometimes a little faster on some problems than the \right"

method although sometimes the \right" method is better. Again, learning can be

made faster by increasing �, but only to a point, as the data in the following table

shows:
� iterations

0.1 25,496

0.5 3,172

1.0 1,381

2.0 617

3.0 391

4.0 (fails)
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Both of the above methods for changing the weights are called online or con-

tinuous update methods because the changes are applied after each pattern is pre-

sented. To distinguish between the two in this report they will be the \wrong" and

the \right" or \correct" continuous update methods. There is a third alternative,

the batch or periodic update method. In this method the weight changes for each

weight are added up for every pattern and after all the patterns have made their

contributions the weights are changed only once. Thus with the four patterns in

the xor problem the weights are changed only once for each iteration rather than

4 times as in either of the continuous update methods. This means that less arith-

metic needs to be done each iteration and each iteration is therefore slightly faster.

On the other hand the continuous methods do more weight changes and take more

time per iteration but they normally require fewer iterations. I can't give you an

example just now of how long it takes to do the xor problem with periodic updates

because when the initial weights are all 0 the weight changes all cancel out and no

learning takes place. This doesn't happen in most problems but in all problems the

network converges faster when the weights start out with small random values, a

subject coming up soon.

A second variation on the periodic update method is to update more than once

for each iteration after just a �xed number of patterns are processed. So if there

were 1000 patterns to be learned an update might happen every 100 patterns.

In some implementations of backprop the learning rate � for periodic updates is

automatically divided by the number of patterns. In this software it is NOT.

2.3 A Derivation of Backprop

No text on backprop would be complete without a derivation of the formulas so in

this section they will be derived. Anyone with Math Anxiety can skip this section

without missing a thing.

Figure 2.5 shows a general three layer network. In this network, the following

relationships hold:

ok =
1

1 + e�netk

netk =
X

j

wjkoj

oj =
1

1 + e�netj

netj =
X

i

wijoi

Backprop is derived by assuming you want to minimize the error on the output

units over all the patterns using the following formula for this error, E:

E =
1

2

X

p

(
X

k

(tpk � opk)
2)
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Figure 2.5: A general three-layer back-propagation network. When wjk changes it

a�ects only the error on one output unit, k. When wij changes it a�ects the error

on all the output units.

where p is the subscript for the pattern and k is the subscript for the output units.

Then, tpk is the target value of output unit k for pattern p and opk is the actual

output value of output layer unit k for pattern p. This is by far the most commonly

used error function however from time to time people have tried other error func-

tions. Notice that E is the sum over all the patterns however we will assume that by

minimizing the error for each pattern individually E will also be minimized. There-

fore we will drop the subscript, p, from here on out and assume we are deriving the

weight change formulas for just one pattern.

The �rst part of the problem is to �nd how E changes as the weight, wjk , leading

into an output unit changes. The second part of the problem is to �nd out how E

changes as wij , a weight leading into a hidden layer unit, j, changes. Finding the

formula for the �rst part is the easiest. We simply write:

@E

@wjk

=
@E

@ok

@ok

@netk

@netk

@wjk

= �(tk � ok)ok(1� ok)oj

This �nal term is the slope of the error curve for one weight, wjk . A plot of the

error will then look something like the curve shown in �gure 2.6. If the slope is

positive we need to decrease the weight by a small amount to lower the error and

if the slope is negative we need to increase the weight by a small amount. To move

farther down the error curve we can then make the weight change as:

wjk  wjk + (��)(�(tk � ok)ok(1� ok)oj)
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Figure 2.6: How the error, E, changes as a function of the weight, wjk between the

hidden unit j and the output unit, k.

and the minus signs cancel out1. People usually de�ne the error signal, �k as follows:

�k = (tk � ok)ok(1� ok)

and then the formula for weight changes for weights leading into the output layer

becomes:

�wjk = ��koj :

Now we have to look at the second part of the problem that relates the change

in E to the change in the weight, wij . In this case, a change to the weight, wij ,

changes oj and this changes the inputs into each unit, k, in the output layer. The

change in E with a change in wij is therefore the sum of the changes to each of the

output units. The chain rule produces:

@E

@wij

=
X

k

@E

@ok

@ok

@netk

@netk

@oj

@oj

@netj

@netj

@wij

=
X

k

�(tk � ok)ok(1� ok)wjkoj(1� oj)oi

=
X

k

��kwjkoj(1� oj)oi:

1Notice the one minus sign before � was introduced to make the error go down and it cancels

with the minus sign in the slope term. Then in doing the code the minus sign in the slope term

can be ignored if the minus sign with the � is also ignored and that is what has been done in this

code. For some weight update methods the minus sign is added later.
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= �oioj(1� oj)
X

k

�kwjk

= �oi�j

if we let �j be:

= oj(1� oj)
X

k

�kwjk

With this de�nition the weight change can be written:

�wij = ��joi:

These derivations can be generalized to networks with more than 3 layers. The

result is the following set of formulas. The �rst one speci�es the weight changes for

weights leading into unit j, no matter what layer unit j is in:

�wij = ��joi:

The second formula speci�es the error signal for the output layer:

�j = (tj � oj)oj(1� oj):

The third formula speci�es the error signal for unit j, in a hidden layer with units

k, above:

�j = oj(1� oj)
X

k

wjk�k:


