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Optimization Algorithms

® Try and find some optimal configuration of a
feature vector

® Feature vectors depend on application area

® Today we'll be trying to discover the best fit
curve for a mystery dataset



PSO Algorithms

® Searched by flocking particles

® Particles moved toward best ever as well as
best at the current time

® Had randomness to perturb the search



Genetic Algorithms

Based on principals of Darwinian Evolution,
mainly Natural Selection and Survival of the
Fittest

Instead of flocking particles we breed them
Only the best get to breed

We also mutate things to make the search a
bit more messy



Pseudo Code GA

While we haven’t found the answer
Update the populations fitness
Breed a new generation

End

Return the best

The devil is in the details (specifically the breeding)



Populations

® Populations consist of individuals
® An individual consists of two items:

® A chromosome of nhumbers that
correspond to a feature vector

® A fitness value to judge how well the
individual is doing



Fithess

® Fitness is a domain specific measure of how
close the given individual is from the optimal

solution

® Can be things like order to visit cities,
weights in a neural network or coefficients

In an equation



Breeding,
How does that work!?

® First we need to pick some parents, and we
need to pick the best ones

® Then we need to apply some genetic
operator on them and put their children in

the next generation



Genetic Operators

® Manipulate an individuals chromosome in
some way to produce a child

® Sometimes a child is better than their
parent, most of the time they’re some
horrible mutant

® Pick the best parents to reduce the amount
of horrible mutant children



Mutation

® Point mutation is the most common genetic
operator

® Picks a point on the chromosome and
tweaks the value, just a little

® This tweak can make an individual better, or
worse



Sexual Recombination

® Sex, it takes two parents

® Mixes parent chromosomes to create a
unique child whose chromosome is a
combination of both parents

® 3 major flavors: Single Point, Double Point
and Cut and Splice

® Ve use Double Point



Sexual Recombination

Parents: Parents:

Children: Children:

Parents:

Children:



Selection

Many ways to do it, but you always need the
best parents!

Fithness Proportional - Individuals are picked
proportional to how good they are

Tournament - Pick N individuals at random
find the best 2

We use tournament selection



Time for some Code
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Runtime Loop

local population = create_population()
local iteration = 0

local best = {}

best.chromosome = {}

best.fitness = 10000

while best.fitness > params.success

and iteration < params.max_iterations do
best = update_fitness(population)
if print_stats and (print_stats) == 'function' then

print_stats(iteration, population, best)

end
population = next_generation(population)
iteration = iteration + 1

end

return best



Individuals

individual = {
chromosome = {1, 2, 3},
fitness = 10000

A population is an array of these



Creating Populations

local create_population = function ()

end

local dim = %params.dimension or 2
local pop_size = %params.population_size or 100

local population = {}
for 1i=1, pop_size do
local ind = {}
ind.fitness = 10000
ind.chromosome = {}
for j=1, dim do
(ind.chromosome, ())
end
(population, ind)
end

return population



Updating Fitness

local update_fitness = function (population)

end

local best = population[1]
for i=1, (population) do
population[i].fitness = %fitness_func(population[i])
if population[i].fitness < best.fitness then
best = population[i]
end
end

local new best = {}

new_best.fitness = best.fitness

new_best.chromosome = {}

for 1i=1, (best.chromosome) do
new_best.chromosome[i] = best.chromosome[1i]

end

return best



Next Generation

local next_generation = function (population)
local next_gen = {}

while (next_gen) < (population) do
local parent1, parent2 = %select_parents(population)
local x = ()

if x > %params.mutation_rate then
local kid = %mutation(parent?)
(next_gen, kid)
else
local kid1, kid2 = %crossover(parentl, parent2)
(next_gen, kid1)
if (next_gen) < (population) then
(next_gen, kid2)
end
end
end
return next_gen
end



Select Parents

local select_parents = function (population)
local tournament = {}
local parent1, parent2
for i=1, %params.tournament_size or 7 do
(tournament, population[ ( (population))])
end
parent1 = tournament[1]
parent2 tournament[2]
for 1=1, (tournament) do
if tournament[i].fitness < parentl1.fitness then
parent2 = parentf
parent1 = tournament[i]

end
end

return parentl, parent2
end



Mutation

local mutation = function (parent)

end

local index = ( (parent.chromosome))

local kid = {}

kid.chromosome = {}

kid.fitness = 10000

for 1=1, (parent.chromosome) do
(kid.chromosome, parent.chromosome[i])

end

kid.chromosome[index] = kid.chromosome[index] + (

return kid

()

.5)



Crossover Part |

local crossover = function (parenti1, parent2)
local kid1 = {}
kid1.chromosome = {}
kid1.fitness = 10000

local kid2 = {}
kid2.chromosome = {}
kid2.fitness = 10000

for 1i=1, (parent1.chromosome) do
kid1.chromosome[i] = parentl1.chromosome[1i]
kid2.chromosome[i] = parent2.chromosome[1i]

end
local index1 = ( (parent1.chromosome))
local 1index2 = ( (parent2.chromosome))

local start, stop



Crossover Part 2

if index1 > index2 then
start = index2
stop = 1index1
else
start = index1
stop = index2
end

for i=start, stop do
tmp = kid1.chromosome[1i]
kid1.chromosome[1i] = kid2.chromosome[1i]
kid2.chromosome[i] = tmp

end

return kid1, kid2
end



Application

® We have a mystery dataset
® We suspect it’s a parabola

® |et’s let the GA figure it out

{5.137499, 0.18893957, -1.5235602, 0.0, 4.75962, 12.7553005, 23.98704}



Fithess Function

function fitness_func (ind)
local test data = {
5.137499,
0.18893957,
-1.5235602,
0.0,
4.75962,
12.7553005,
23.98704
+
local err = 0.0
for 1=1, (test_data) do
local y = (ind.chromosome[1]*i)+(ind.chromosome[2]*(1/2))
err = err + ((y - test_data[i])A2)
end
return err/ (test_data)
end



Fitness Landscape

Any |deas!?
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Let’s Run The Code
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Movie Time!

Q




PSO vs GA

The main difference between the two is the
level of randomness

PSO algorithms hone in on the answer faster
than a GA

GAs spend more time wandering due to
generally high mutation rates

Both can be tweaked to be more or less
random



