
Introduction to
Evolutionary Systems
Natural language and ARtificial intelligence Group

Optimization Algorithms

• Try and find some optimal configuration of a
feature vector

• Feature vectors depend on application area

• Today we’ll be trying to discover the best fit
curve for a mystery dataset

PSO Algorithms

• Searched by flocking particles

• Particles moved toward best ever as well as
best at the current time

• Had randomness to perturb the search

Genetic Algorithms

• Based on principals of Darwinian Evolution,
mainly Natural Selection and Survival of the
Fittest

• Instead of flocking particles we breed them

• Only the best get to breed

• We also mutate things to make the search a
bit more messy

Pseudo Code GA

While we haven’t found the answer
Update the populations fitness
Breed a new generation

End
Return the best

The devil is in the details (specifically the breeding)

Populations

• Populations consist of individuals

• An individual consists of two items:

• A chromosome of numbers that
correspond to a feature vector

• A fitness value to judge how well the
individual is doing

Fitness

• Fitness is a domain specific measure of how
close the given individual is from the optimal
solution

• Can be things like order to visit cities,
weights in a neural network or coefficients
in an equation

Breeding,
How does that work?

• First we need to pick some parents, and we
need to pick the best ones

• Then we need to apply some genetic
operator on them and put their children in
the next generation

Genetic Operators

• Manipulate an individuals chromosome in
some way to produce a child

• Sometimes a child is better than their
parent, most of the time they’re some
horrible mutant

• Pick the best parents to reduce the amount
of horrible mutant children

Mutation

• Point mutation is the most common genetic
operator

• Picks a point on the chromosome and
tweaks the value, just a little

• This tweak can make an individual better, or
worse

Sexual Recombination

• Sex, it takes two parents

• Mixes parent chromosomes to create a
unique child whose chromosome is a
combination of both parents

• 3 major flavors: Single Point, Double Point
and Cut and Splice

• We use Double Point

Sexual Recombination

Selection

• Many ways to do it, but you always need the
best parents!

• Fitness Proportional - Individuals are picked
proportional to how good they are

• Tournament - Pick N individuals at random
find the best 2

• We use tournament selection

Time for some Code

Runtime Loop
 local population = create_population()
 local iteration = 0
 local best = {}
 best.chromosome = {}
 best.fitness = 10000

 while best.fitness > params.success
 and iteration < params.max_iterations do
 best = update_fitness(population)
 if print_stats and type(print_stats) == 'function' then
 print_stats(iteration, population, best)
 end
 population = next_generation(population)
 iteration = iteration + 1
 end
 return best

Individuals

individual = {
 chromosome = {1, 2, 3},
 fitness = 10000
}

A population is an array of these

Creating Populations
 local create_population = function ()
 local dim = %params.dimension or 2
 local pop_size = %params.population_size or 100

 local population = {}
 for i=1, pop_size do
 local ind = {}
 ind.fitness = 10000
 ind.chromosome = {}
 for j=1, dim do
 tinsert(ind.chromosome, random())
 end
 tinsert(population, ind)
 end

 return population
 end

Updating Fitness
 local update_fitness = function (population)
 local best = population[1]
 for i=1, getn(population) do
 population[i].fitness = %fitness_func(population[i])
 if population[i].fitness < best.fitness then
 best = population[i]
 end
 end

 local new_best = {}
 new_best.fitness = best.fitness
 new_best.chromosome = {}
 for i=1, getn(best.chromosome) do
 new_best.chromosome[i] = best.chromosome[i]
 end
 return best
 end

Next Generation
 local next_generation = function (population)
 local next_gen = {}
 while getn(next_gen) < getn(population) do
 local parent1, parent2 = %select_parents(population)
 local x = random()
 if x > %params.mutation_rate then
 local kid = %mutation(parent1)
 tinsert(next_gen, kid)
 else
 local kid1, kid2 = %crossover(parent1, parent2)
 tinsert(next_gen, kid1)
 if getn(next_gen) < getn(population) then
 tinsert(next_gen, kid2)
 end
 end
 end
 return next_gen
 end

Select Parents
 local select_parents = function (population)
 local tournament = {}
 local parent1, parent2
 for i=1, %params.tournament_size or 7 do
 tinsert(tournament, population[random(getn(population))])
 end
 parent1 = tournament[1]
 parent2 = tournament[2]
 for i=1, getn(tournament) do
 if tournament[i].fitness < parent1.fitness then
 parent2 = parent1
 parent1 = tournament[i]
 end
 end

 return parent1, parent2
 end

Mutation

 local mutation = function (parent)
 local index = random(getn(parent.chromosome))
 local kid = {}
 kid.chromosome = {}
 kid.fitness = 10000
 for i=1, getn(parent.chromosome) do
 tinsert(kid.chromosome, parent.chromosome[i])
 end
 kid.chromosome[index] = kid.chromosome[index] + (random() - .5)
 return kid
 end

Crossover Part 1
 local crossover = function (parent1, parent2)
 local kid1 = {}
 kid1.chromosome = {}
 kid1.fitness = 10000

 local kid2 = {}
 kid2.chromosome = {}
 kid2.fitness = 10000

 for i=1, getn(parent1.chromosome) do
 kid1.chromosome[i] = parent1.chromosome[i]
 kid2.chromosome[i] = parent2.chromosome[i]
 end

 local index1 = random(getn(parent1.chromosome))
 local index2 = random(getn(parent2.chromosome))
 local start, stop

Crossover Part 2
 if index1 > index2 then
 start = index2
 stop = index1
 else
 start = index1
 stop = index2
 end

 for i=start, stop do
 tmp = kid1.chromosome[i]
 kid1.chromosome[i] = kid2.chromosome[i]
 kid2.chromosome[i] = tmp
 end

 return kid1, kid2
 end

Application

• We have a mystery dataset

• We suspect it’s a parabola

• Let’s let the GA figure it out

{5.137499, 0.18893957, -1.5235602, 0.0, 4.75962, 12.7553005, 23.98704}

Fitness Function
function fitness_func (ind)
 local test_data = {

5.137499,
0.18893957,
-1.5235602,
0.0,
4.75962,
12.7553005,
23.98704

}
 local err = 0.0
 for i=1, getn(test_data) do
 local y = (ind.chromosome[1]*i)+(ind.chromosome[2]*(i^2))
 err = err + sqrt((y - test_data[i])^2)
 end
 return err/getn(test_data)
end

Fitness Landscape
Any Ideas?

Let’s Run The Code

Best Fitness
Over Time

Average Fitness
Over Time

Movie Time!

PSO vs GA

• The main difference between the two is the
level of randomness

• PSO algorithms hone in on the answer faster
than a GA

• GAs spend more time wandering due to
generally high mutation rates

• Both can be tweaked to be more or less
random

