
Introduction to 
Evolutionary Systems
Natural language and ARtificial intelligence Group



Optimization Algorithms

• Try and find some optimal configuration of a 
feature vector

• Feature vectors depend on application area

• Today we’ll be trying to discover the best fit 
curve for a mystery dataset



PSO Algorithms

• Searched by flocking particles

• Particles moved toward best ever as well as 
best at the current time

• Had randomness to perturb the search



Genetic Algorithms

• Based on principals of Darwinian Evolution, 
mainly Natural Selection and Survival of the 
Fittest

• Instead of flocking particles we breed them

• Only the best get to breed

• We also mutate things to make the search a 
bit more messy



Pseudo Code GA

While we haven’t found the answer
Update the populations fitness
Breed a new generation

End
Return the best

The devil is in the details (specifically the breeding)



Populations

• Populations consist of individuals

• An individual consists of two items:

• A chromosome of numbers that 
correspond to a feature vector

• A fitness value to judge how well the 
individual is doing



Fitness

• Fitness is a domain specific measure of how 
close the given individual is from the optimal 
solution

• Can be things like order to visit cities, 
weights in a neural network or coefficients 
in an equation 



Breeding, 
How does that work?

• First we need to pick some parents, and we 
need to pick the best ones

• Then we need to apply some genetic 
operator on them and put their children in 
the next generation 



Genetic Operators

• Manipulate an individuals chromosome in 
some way to produce a child

• Sometimes a child is better than their 
parent, most of the time they’re some 
horrible mutant

• Pick the best parents to reduce the amount 
of horrible mutant children



Mutation

• Point mutation is the most common genetic 
operator

• Picks a point on the chromosome and 
tweaks the value, just a little

• This tweak can make an individual better, or 
worse



Sexual Recombination

• Sex, it takes two parents

• Mixes parent chromosomes to create a 
unique child whose chromosome is a 
combination of both parents

• 3 major flavors: Single Point, Double Point 
and Cut and Splice

• We use Double Point



Sexual Recombination



Selection

• Many ways to do it, but you always need the 
best parents!

• Fitness Proportional - Individuals are picked 
proportional to how good they are

• Tournament - Pick N individuals at random 
find the best 2

• We use tournament selection



Time for some Code



Runtime Loop
    local population = create_population()
    local iteration = 0
    local best = {}
    best.chromosome = {}
    best.fitness = 10000

    while best.fitness > params.success 
     and iteration < params.max_iterations do
        best = update_fitness(population)
        if print_stats and type(print_stats) == 'function' then
            print_stats(iteration, population, best)
        end
        population = next_generation(population)
        iteration = iteration + 1
    end
    return best



Individuals

individual = {
    chromosome = {1, 2, 3},
    fitness = 10000
}

A population is an array of these



Creating Populations
    local create_population = function ()
        local dim = %params.dimension or 2
        local pop_size = %params.population_size or 100

        local population = {}
        for i=1, pop_size do
            local ind = {}
            ind.fitness = 10000
            ind.chromosome = {}
            for j=1, dim do
                tinsert(ind.chromosome, random())
            end
            tinsert(population, ind)
        end

        return population
    end



Updating Fitness
    local update_fitness = function (population)
        local best = population[1]
        for i=1, getn(population) do
            population[i].fitness = %fitness_func(population[i])
            if population[i].fitness < best.fitness then
                best = population[i]
            end
        end

        local new_best = {}
        new_best.fitness = best.fitness
        new_best.chromosome = {}
        for i=1, getn(best.chromosome) do
            new_best.chromosome[i] = best.chromosome[i]
        end
        return best
    end



Next Generation
    local next_generation = function (population)
        local next_gen = {}
        while getn(next_gen) < getn(population) do
            local parent1, parent2 = %select_parents(population)
            local x = random()
            if x > %params.mutation_rate then
                local kid = %mutation(parent1)
                tinsert(next_gen, kid)
            else
                local kid1, kid2 = %crossover(parent1, parent2)
                tinsert(next_gen, kid1)
                if getn(next_gen) < getn(population) then
                    tinsert(next_gen, kid2)
                end
            end
        end
        return next_gen
    end



Select Parents
    local select_parents = function (population)
        local tournament = {}
        local parent1, parent2
        for i=1, %params.tournament_size or 7 do
            tinsert(tournament, population[random(getn(population))])
        end
        parent1 = tournament[1]
        parent2 = tournament[2]
        for i=1, getn(tournament) do
            if tournament[i].fitness < parent1.fitness then
                parent2 = parent1
                parent1 = tournament[i]
            end
        end

        return parent1, parent2
    end



Mutation

    local mutation = function (parent)
        local index = random(getn(parent.chromosome))
        local kid = {}
        kid.chromosome = {}
        kid.fitness = 10000
        for i=1, getn(parent.chromosome) do
            tinsert(kid.chromosome, parent.chromosome[i])
        end
        kid.chromosome[index] = kid.chromosome[index] + (random() - .5)
        return kid
    end



Crossover Part 1
    local crossover = function (parent1, parent2)
        local kid1 = {}
        kid1.chromosome = {}
        kid1.fitness = 10000

        local kid2 = {}
        kid2.chromosome = {}
        kid2.fitness = 10000

        for i=1, getn(parent1.chromosome) do
            kid1.chromosome[i] = parent1.chromosome[i]
            kid2.chromosome[i] = parent2.chromosome[i]
        end

        local index1 = random(getn(parent1.chromosome))
        local index2 = random(getn(parent2.chromosome))
        local start, stop



Crossover Part 2
        if index1 > index2 then
            start = index2
            stop = index1
        else
            start = index1
            stop = index2
        end

        for i=start, stop do
            tmp = kid1.chromosome[i]
            kid1.chromosome[i] = kid2.chromosome[i]
            kid2.chromosome[i] = tmp
        end

        return kid1, kid2
    end



Application

• We have a mystery dataset

• We suspect it’s a parabola

• Let’s let the GA figure it out

{5.137499, 0.18893957, -1.5235602, 0.0, 4.75962, 12.7553005, 23.98704}



Fitness Function
function fitness_func (ind)
    local test_data = {

5.137499, 
0.18893957, 
-1.5235602, 
0.0, 
4.75962, 
12.7553005, 
23.98704

}
    local err = 0.0
    for i=1, getn(test_data) do
       local y = (ind.chromosome[1]*i)+(ind.chromosome[2]*(i^2))
       err = err + sqrt((y - test_data[i])^2)
    end
    return err/getn(test_data)
end



Fitness Landscape
Any Ideas?



Let’s Run The Code



Best Fitness 
Over Time



Average Fitness 
Over Time



Movie Time!



PSO vs GA

• The main difference between the two is the 
level of randomness

• PSO algorithms hone in on the answer faster 
than a GA

• GAs spend more time wandering due to 
generally high mutation rates

• Both can be tweaked to be more or less 
random


