
Microcontrollers
Class 4: Timer/Counters

March 28, 2011

Outline

Timer/Counter Introduction

Timers as a Timebase

Timers for PWM



Outline

Timer/Counter Introduction

Timers as a Timebase

Timers for PWM

Outline

Timer/Counter Introduction

Timers as a Timebase

Timers for PWM



Review

The story so far...

I Bits and shifting

I Analog and Digital input and output

I Serial stuffies

I Interrupts

I Now we get to give our programs a sense of timing

Timer/Counter Overview

The big picture

I We’ve been using lots of software counters:
for(i=0; i<8; i++)...

I The Mega88 chip has 3 built-in hardware counters that we
can use instead

I Why? They’re more efficient, reliable, and they free up our
software to do other things

I Why timer/counter? Well, internally they’re really counters
but if you hook them up to a clock, counting clock pulses,
you’ve got a timer.

I They can also count hardware events (pin toggling, etc) but I
won’t run any examples of that here. Bother me by e-mail if
you’re interested.



Timer/Counter Hardware Block Diagram

Timers

Setup

I Timers are my least-favorite thing to configure on the AVR,
but it’s not so bad once you’ve got the basics down.

I First need a source: what you’re counting
we’ll use built-in clocks, and will need to set a prescaler

I Hardware compares the contents of two special memory
registers (OCR0A and OCR0B) to the current counter value

I When the counter equals TOP, three things can happen:
reset the timer
fire an OC interrupt
set, clear, or toggle a dedicated output pin

I What happens depends on which mode you’re in

I In addition to the OCRs, there is also an interrupt available
for when the timer overflows (wraps back around to 0)



Modes

What can we do with these timers?

I Normal mode: just counts up from 0 to 255. Boring, but
useful for a quick-and-dirty timebase using the overflow
interrupt.

I Clear Timer on Compare (CTC) mode: Count up to value in
OCR0A (not necessarily 255), then go back to zero. Provides
different timing cycle durations.

I Fast PWM mode: Counts 0..255, does things on output pins
when counter hits the OCR0A/B values

I Phase-correct PWM mode: first counts up, then counts down

Modes



Configuration

Putting the right bits in the right registers

I Control registers: TCCR0A, TCCR0B
selects clock source, counting mode, and pin-output

I Interrupt mask register: TIMSK0
selects which interrupts to fire (overflow, compare)

I Output compare registers: OCR0A, OCR0B
put your compare-values in here,
changes duty-cycle (both, in some modes) or frequency
(OCR0A only)

I Examples for details!

Waveform Select Modes (p. 108)



Clock Select (p. 110)

Output Mode (p. 106)



Outline

Timer/Counter Introduction

Timers as a Timebase

Timers for PWM

Simple Clock

Tick, tick, tick

I I’m surprised by the number of times I see people buy clock
modules for their hardware projects

I Add in a crystal (next class) and you’ll have a pretty-darn
accurate timebase

I The basics:
Set up global time-keeping variables
Set up a CTC timer to interrupt once every (howeverlong)
In the interrupt, increment your various counters (lightweight!)
In the mainloop, use the time variables

I Initialization for the timer: mode, clock prescale, interrupt
enables

I See the example: counterClock.c



Outline

Timer/Counter Introduction

Timers as a Timebase

Timers for PWM

Timer-based PWM

Dimming LEDs in hardware

I Pins labelled OCxxx are directly connected to the output
compare logic

I Result: you can set OCR0A, OCR0B and get PWM done for
you automatically

I Timer1 is a 16-bit timer: has enough resolution for easy servo
driving

I Setup:
Select PWM mode (we’ll use fast)
Set up the output pin modes

I See example: counterPWM.c



Next Class

Odds and Ends

I Special requests??

I PROGMEM, EEPROM, and funny memory types

I Moving past the classboard: how to wire up your own circuits
from the ground up

I Turn your classboard into a bare-chip programmer! (Optional)

The End

Outline


	
	Timer/Counter Introduction
	Timers as a Timebase
	Timers for PWM

