
Intro to Microcontrollers
I2C on AVR

November 11, 2008

Outline

I2C Overview

I2C on the AVR

Examples



Outline

I2C Overview

I2C on the AVR

Examples

Resources

I http://en.wikipedia.org/wiki/I2c

I http://www.atmel.ru/Disks/AVR

I ”I2C” copyright Phillips.
It’s called TWI (two-wire interface) in AVR docs

I Discussion in the Mega48P datasheet starts on p. 214



What Is I2C?

I Synchronous serial protocol: clock and data lines

I Bus-master: one ”master” sets the clock at a time

I All other devices are slaved to that clock,
slaves only speak when spoken to

I When current master is done, next master can set clock

I Packets have protocol: address packets and data packets

I Can have 128 devices on the same two wires

I Reasonably fast: 100kHz and 400kHz specs.

Electrical implementation

I Two lines: clock (SCL) and data (SDA)

I Pullup resistors on the two lines: normally-high.

I Devices either tri-state (allowing line high)
or pull the line low

I Data is read off during the high parts of the clock

I Data must be stable during the clock high, because...



Bus Protocol Stuff

Start and Stop

I Start is signalled by a falling voltage change during a clock

I Stop is rising voltage during a clock

I (Remember: falling is pulled low, rising is tri-state)

Packets

I Address packet: Seven address bits, data direction bit (read or
write), acknowledge bit

I Data packets: Eight data bits, one acknowledge bit

I Ack bit: Pulled low for ACK, left floating high for NACK.

Modes

Four modes: Master-Slave & Transmit-Receive

I Master Transmitter: write to a memory device
master sends start, transmitter sends address + Write

I Master Receiver: read back from the memory, poll sensors
master sends start, receiver sends address + Read

I Slave Transmitter: AVR acting as the sensor, relaying info
wait for address + Read, then transmit

I Slave Receiver: take commands from another chip? I2C-SD
bridge?
wait for address + Write, then listen and process

I Devices can/do change modes frequently



Multi-Mastering and Arbitration

Avoiding data collisions

I Since anyone can act as the master, need arbitration

I Line can be pulled down by anyone: it’s like an AND operation

I Masters listen for someone else pulling the data line down
when they’re transmitting. If they hear anything, they stop
and let the other master talk through.

I (Suggests a (completely trivial) hardware DoS attack on I2C
busses?)

I AVR implements arbitration with a collision register flag.

I I’ve never used more than one master, so it’s all new to me.

Outline

I2C Overview

I2C on the AVR

Examples



Hardware Resources

I On Mega48/88/168, lots of stuff done in hardware

I Clock, bit-rate synchronizer (TWBR register)

I Arbitration detection (TWWC flag)

I Start/stop detection (can wake chip up, throw interrupts)

I Address matching (TWAR register)

I Shifting the bits into a nice 8-bit data register (TWDR)

I What’s left for you to do? All of the protocol stuff.

The Registers

I Pullups: Can cheat and use the internal pullups on the
SDA/SCL pins

I Bit rate: When master, set how fast want to talk in TWBR
along with pre-scaler in TWSR (status register)

I TWCR (Control register): TWIE (interrupt enable), TWEN
(enable), TWWC (write collision), TWSTO (stop), TWSTA
(start), TWEA (enable acknowledge), TWINT (interrupt)

I TWSR (Status register): prescaler bits live here, but mostly
it’s status bits. Check these periodically during
communication.

I TWDR (Data register): data sent/received goes here

I TWAR (Address register): Set your address here if you’re a
slave.



Mastering

Transmit

I Set TWEN, TWSTA, TWINT

I When AVR clears TWINT, write address + W to TWDR
(data register) and clear TWSTA, set TWINT again

I On next TWINT, put data in TWDR, set TWINT

I Continue until done, when set TWSTO

I Check status registers along the way for arbitration

Mastering

Receive

I As before: Set TWEN, TWSTA, TWINT, and wait for
TWINT

I Then transmit address + R

I Read data out of TWDR every time TWINT cleared

I After last byte, instead of regular ACK, leave line high

I Set TWSTO to signal stop

I Status registers for arbitration



Slaving

Transmit

I Set address in TWAR, TWEN, TWEA (enable ack).

I TWSTA, TWSTO cleared

I When AVR hears address + R, it’ll enter transmit mode

I Put bytes into TWDR, set TWINT and TWEA to
acknowledge

Slaving

Receive

I As above, up to address + W

I Read out of TWDR when TWINT

I Read TWSR to see what to do

I Read data out of TWDR

I Set TWINT and TWEA to acknowledge



Outline

I2C Overview

I2C on the AVR

Examples

AVR-to-AVR Bus

The full Monte

I One AVR set up as Master, does both a transmit and a receive

I Other AVR set up as Slave, receive and transmit

I Master sends x , Slave receives.

I Master asks for a receive, Slave transmits x + 1



The End

Outline


	I2C Overview
	I2C on the AVR
	Examples

