
Digital Design & FPGA WorkshopDigital Design & FPGA Workshop

• Week 3 – Verilog HDLWeek 3 Verilog HDL
– HDL Overview

Combinatorial modeling– Combinatorial modeling

– Common mistakes

M d l d i– Modular design

– Exercise
O fi t V il d l 4 Bit F ll Add• Our first Verilog module, a 4 Bit Full Adder

L1: 6.111 Spring 2006 11Introductory Digital Systems Laboratory

Hardware Implementation

Boolean Logic and State

Building Digital SystemsBuilding Digital Systems

Goal of 6.111: Building binary digital solutions to
computational problems

Behavioral Description

conversion to binary,
Booelan algebra

device selection
and wiring

algorithm selection,
flowcharts, etc.

Problem Statement
Labs & Design project
Product specs

Algorithms, RTL, etc.
Flowcharts
State transition diagrams

Logic equations
Circuit schematics

TTL Gates (AND,OR,XOR…)
Modules (counter, shifter,…)
Programmable Logic

L1: 6.111 Spring 2006 12Introductory Digital Systems Laboratory

Hardware Implementation

HDL Description

Building Digital Systems with Building Digital Systems with HDLsHDLs

Behavioral Description

software-like
programming

automated synthesis

algorithm selection,
flowcharts, etc.

Problem Statement
Labs & Design project
Product specs

Algorithms, RTL, etc.
Flowcharts
State transition diagrams

Verilog code
VHDL code

Programmable Logic
Custom ASICs

Logic synthesis using a Hardware Description Language (HDL)
automates the most tedious and error-prone aspects of design

L1: 6.111 Spring 2006 13Introductory Digital Systems Laboratory

Hardware structures can be modeled effectively in either
VHDL and Verilog. Verilog is similar to c and a bit easier to learn.

VerilogVerilog and VHDLand VHDL

Created by Gateway Design
Automation in 1985;
now an IEEE standard
Initially an interpreted
language for gate-level
simulation
Less explicit typing (e.g.,
compiler will pad arguments
of different widths)
No special extensions for
large designs

Commissioned in 1981 by
Department of Defense;
now an IEEE standard
Initially created for ASIC
synthesis

Strongly typed; potential
for verbose code

Strong support for package
management and large
designs

VHDL Verilog

L3: 6.111 Spring 200 Introductory Digital Systems Laboratory

Verilog

Synthesis and Synthesis and HDLsHDLs

input a,b;
output sum;
assign sum <= {1b’0, a} + {1b’0, b};

FPGA PAL ASIC
(Custom ICs)

Hardware description language (HDL) is a convenient, device-
independent representation of digital logic

Netlist
g1 "and" n1 n2 n5
g2 "and" n3 n4 n6
g3 "or" n5 n6 n7

HDL description is compiled
into a netlist

Synthesis optimizes the logic

Mapping targets a specific
hardware platform

Compilation and
Synthesis

Mapping

5

L1: 6.111 Spring 2006 14Introductory Digital Systems Laboratory

Levels of Modeling in Levels of Modeling in VerilogVerilog

Behavioral or Algorithmic Level
Highest level in the Verilog HDL
Design specified in terms of algorithm (functionality) without hardware
details. Similar to “c” type specification
Most common level of description

Dataflow Level
The flow of data through components is specified based on the idea of how
data is processed

Gate Level
Specified as wiring between logic gates
Not practical for large examples

Switch Level
Description in terms of switching (modeling a transistor)
No useful in general logic design – we won’t use it

A design mix and match all levels in one design is possible.
In general Register Transfer Level (RTL) is used for a
combination of Behavioral and Dataflow descriptions

L1: 6.111 Spring 2006 15Introductory Digital Systems Laboratory

VerilogVerilog HDLHDL

Misconceptions
The coding style or clarity does not matter as long as it works
Two different Verilog encodings that simulate the same way will
synthesize to the same set of gates
Synthesis just can’t be as good as a design done by humans

Shades of assembly language versus a higher level language

What can be Synthesized
Combinational Functions

Multiplexors, Encoders, Decoders, Comparators, Parity Generators,
Adders, Subtractors, ALUs, Multipliers
Random logic

Control Logic
FSMs

What can’t be Synthesized
Precise timing blocks (e.g., delay a signal by 2ns)
Large memory blocks (can be done, but very inefficient)

Understand what constructs are used in
simulation vs. hardware mapping

L3: 6.111 Spring 2006 8Introductory Digital Systems Laboratory

VerilogVerilog: The Module: The Module

Verilog designs consist of
interconnected modules.

A module can be an element or
collection of lower level design blocks.

A simple module with combinational
logic might look like this:

Declare and name a module; list its
ports. Don’t forget that semicolon.

Specify each port as input, output,
or inout

Express the module’s behavior.
Each statement executes in
parallel; order does not matter.

module mux_2_to_1(a, b, out,

outbar, sel);

// This is 2:1 multiplexor

input a, b, sel;

output out, outbar;

assign out = sel ? a : b;

assign outbar = ~out;

endmodule Conclude the module code.

2-to-1 multiplexer with inverted output

1

0

sel

out
outbar

a

b

Comment starts with //
Verilog skips from // to end of the line

Out = sel ● a + sel ● b

L3: 6.111 Spring 2006 9Introductory Digital Systems Laboratory

Continuous (Dataflow) AssignmentContinuous (Dataflow) Assignment

Continuous assignments use the assign keyword
A simple and natural way to represent combinational logic
Conceptually, the right-hand expression is continuously evaluated as a function of
arbitrarily-changing inputs…just like dataflow
The target of a continuous assignment is a net driven by combinational logic
Left side of the assignment must be a scalar or vector net or a concatenation of scalar
and vector nets. It can’t be a scalar or vector register (discussed later). Right side can be
register or nets
Dataflow operators are fairly low-level:

Conditional assignment: (conditional_expression) ? (value-if-true) : (value-if-false);
Boolean logic: ~, &, |
Arithmetic: +, -, *

Nested conditional operator (4:1 mux)
assign out = s1 ? (s0 ? i3 : i2) : (s0? i1 : i0);

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;

assign out = sel ? a : b;
assign outbar = ~out;

endmodule

1

0

sel

out
outbar

a

b

L3: 6.111 Spring 2006 10Introductory Digital Systems Laboratory

Gate Level DescriptionGate Level Description

module muxgate (a, b, out,
outbar, sel);
input a, b, sel;
output out, outbar;
wire out1, out2, selb;
and a1 (out1, a, sel);
not i1 (selb, sel);
and a2 (out2, b , selb);
or o1 (out, out1, out2);
assign outbar = ~out;
endmodule

out

outbar

sel
out1

out2

a

b

Verilog supports basic logic gates as primitives
and, nand, or, nor, xor, xnor, not, buf

can be extended to multiple inputs: e.g., nand nand3in (out, in1, in2,in3);
bufif1 and bufif0 are tri-state buffers

Net represents connections between hardware elements. Nets are
declared with the keyword wire.

selb

L3: 6.111 Spring 2006 11Introductory Digital Systems Laboratory

Procedural Assignment with Procedural Assignment with alwaysalways

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;

reg out, outbar;

always @ (a or b or sel)

begin

if (sel) out = a;
else out = b;

outbar = ~out;

end

endmodule

Exactly the same as before.

Anything assigned in an always
block must also be declared as
type reg (next slide)

Conceptually, the always block
runs once whenever a signal in the
sensitivity list changes value

Statements within the always
block are executed sequentially.
Order matters!

Surround multiple statements in a
single always block with begin/end.

Procedural assignment allows an alternative, often higher-level, behavioral
description of combinational logic
Two structured procedure statements: initial and always

Supports richer, C-like control structures such as if, for, while,case

L3: 6.111 Spring 2006 12Introductory Digital Systems Laboratory

VerilogVerilog RegistersRegisters

In digital design, registers represent memory elements (we
will study these in the next few lectures)
Digital registers need a clock to operate and update their
state on certain phase or edge
Registers in Verilog should not be confused with hardware
registers
In Verilog, the term register (reg) simply means a variable
that can hold a value
Verilog registers don’t need a clock and don’t need to be
driven like a net. Values of registers can be changed
anytime in a simulation by assuming a new value to the
register

L3: 6.111 Spring 2006 13Introductory Digital Systems Laboratory

MixMix--andand--Match AssignmentsMatch Assignments

Procedural and continuous assignments can (and often do) co-exist
within a module
Procedural assignments update the value of reg. The value will remain
unchanged till another procedural assignment updates the variable.
This is the main difference with continuous assignments in which the
right hand expression is constantly placed on the left-side

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;
else out = b;

end

assign outbar = ~out;

endmodule

procedural
description

continuous
description

1

0

sel

out
a

b outbar

L3: 6.111 Spring 2006 14Introductory Digital Systems Laboratory

The The casecase StatementStatement

case and if may be used interchangeably to implement
conditional execution within always blocks

case is easier to read than a long string of if...else statements

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;
else out = b;

end

assign outbar = ~out;

endmodule

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;
reg out;

always @ (a or b or sel)
begin

case (sel)
1’b1: out = a;
1’b0: out = b;

endcase
end

assign outbar = ~out;

endmodule

Note: Number specification notation: <size>’<base><number>
(4’b1010 if a 4-bit binary value, 16’h6cda is a 16 bit hex number, and 8’d40 is an 8-bit decimal value)

L3: 6.111 Spring 2006 15Introductory Digital Systems Laboratory

The Power of The Power of VerilogVerilog: : nn--bit Signalsbit Signals

Multi-bit signals and buses are easy in Verilog.
2-to-1 multiplexer with 8-bit operands:

1

0

sel

out

outbar

a

b

8

8

8

8

module mux_2_to_1(a, b, out,
outbar, sel);

input[7:0] a, b;
input sel;
output[7:0] out, outbar;
reg[7:0] out;

always @ (a or b or sel)
begin

if (sel) out = a;
else out = b;

end

assign outbar = ~out;

endmodule

assign {b[7:0],b[15:8]} = {a[15:8],a[7:0]};
effects a byte swap

Concatenate signals using the { } operator

L3: 6.111 Spring 2006 16Introductory Digital Systems Laboratory

The Power of The Power of VerilogVerilog: Integer Arithmetic: Integer Arithmetic

Verilog’s built-in arithmetic makes a 32-bit adder easy:

A 32-bit adder with carry-in and carry-out:

module add32(a, b, sum);
input[31:0] a,b;
output[31:0] sum;
assign sum = a + b;

endmodule

module add32_carry(a, b, cin, sum, cout);
input[31:0] a,b;
input cin;
output[31:0] sum;
output cout;
assign {cout, sum} = a + b + cin;

endmodule

L3: 6.111 Spring 2006 17Introductory Digital Systems Laboratory

Dangers of Dangers of VerilogVerilog: Incomplete Specification: Incomplete Specification

module maybe_mux_3to1(a, b, c,
sel, out);

input [1:0] sel;
input a,b,c;
output out;
reg out;

always @(a or b or c or sel)
begin
case (sel)
2'b00: out = a;
2'b01: out = b;
2'b10: out = c;

endcase
end

endmodule

Is this a 3-to-1 multiplexer?

Proposed Verilog Code:Goal:

00

sel

out01

10

a

b

c

2

3-to-1 MUX
(‘11’ input is a don’t-care)

L3: 6.111 Spring 2006 18Introductory Digital Systems Laboratory

Latch memory “latches”
old data when G=0 (we
will discuss latches later)
In practice, we almost
never intend this

Incomplete Specification Infers LatchesIncomplete Specification Infers Latches

module maybe_mux_3to1(a, b, c,
sel, out);

input [1:0] sel;
input a,b,c;
output out;
reg out;

always @(a or b or c or sel)
begin

case (sel)
2'b00: out = a;
2'b01: out = b;
2'b10: out = c;

endcase
end

endmodule

if out is not assigned
during any pass through

the always block, then the
previous value must be

retained!

00

sel

out01

10

a

b

c

2

D Q

G

sel[1]
sel[0]

Synthesized Result:

L3: 6.111 Spring 2006 19Introductory Digital Systems Laboratory

Avoiding Incomplete SpecificationAvoiding Incomplete Specification

Precede all conditionals
with a default assignment
for all signals assigned
within them…

always @(a or b or c or sel)
begin

out = 1’bx;
case (sel)

2'b00: out = a;
2'b01: out = b;
2'b10: out = c;

endcase
end

endmodule

always @(a or b or c or sel)
begin
case (sel)

2'b00: out = a;
2'b01: out = b;
2'b10: out = c;
default: out = 1’bx;

endcase
end

endmodule

…or, fully specify all
branches of conditionals and
assign all signals from all
branches

For each if, include else
For each case, include default

L3: 6.111 Spring 2006 20Introductory Digital Systems Laboratory

Dangers of Dangers of VerilogVerilog: Priority Logic: Priority Logic

module binary_encoder(i, e);
input [3:0] i;
output [1:0] e;
reg e;

always @(i)
begin

if (i[0]) e = 2’b00;
else if (i[1]) e = 2’b01;
else if (i[2]) e = 2’b10;
else if (i[3]) e = 2’b11;
else e = 2’bxx;

end
endmodule

What is the resulting circuit?

Proposed Verilog Code:Goal:

I3
I2
I1
I0

4-to-2 Binary Encoder

E1
E0

1
0

0
1
0
0

I3 I2 I1 I0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

all others

E1 E0

0 0
0 1
1 0
1 1
X X

L3: 6.111 Spring 2006 21Introductory Digital Systems Laboratory

if (i[0]) e = 2’b00;
else if (i[1]) e = 2’b01;
else if (i[2]) e = 2’b10;
else if (i[3]) e = 2’b11;
else e = 2’bxx;
end

Priority LogicPriority Logic

if-else and case statements are interpreted very literally!
Beware of unintended priority logic.

Intent: if more than one input is
1, the result is a don’t-care.

I3 I2 I1 I0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

all others

E1 E0

0 0
0 1
1 0
1 1
X X

Code: if i[0] is 1, the result is 00
regardless of the other inputs.
i[0] takes the highest priority.

1

i[0]

0

2’b001

i[1]

0

2’b011

i[2]

0

2’b101

i[3]

0

2’b11

2’bxx e[1:0]

Inferred
Result:

L3: 6.111 Spring 2006 22Introductory Digital Systems Laboratory

Avoiding (Unintended) Priority LogicAvoiding (Unintended) Priority Logic

Make sure that if-else and case statements are parallel
If mutually exclusive conditions are chosen for each branch...
...then synthesis tool can generate a simpler circuit that evaluates
the branches in parallel

module binary_encoder(i, e);
input [3:0] i;
output [1:0] e;
reg e;

always @(i)
begin
if (i == 4’b0001) e = 2’b00;
else if (i == 4’b0010) e = 2’b01;
else if (i == 4’b0100) e = 2’b10;
else if (i == 4’b1000) e = 2’b11;
else e = 2’bxx;

end
endmodule

Minimized Result:Parallel Code:

I3

I1
I0

E0

E1

L3: 6.111 Spring 2006 23Introductory Digital Systems Laboratory

Interconnecting ModulesInterconnecting Modules

Modularity is essential to the success of large designs
A Verilog module may contain submodules that are “wired together”
High-level primitives enable direct synthesis of behavioral descriptions (functions such
as additions, subtractions, shifts (<< and >>), etc.

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Example: A 32-bit ALU

F2 F1 F0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 X

Function

A + B
A + 1
A - B
A - 1
A * B

Function Table

L3: 6.111 Spring 2006 24Introductory Digital Systems Laboratory

Module DefinitionsModule Definitions

2-to-1 MUX 3-to-1 MUX

32-bit Adder 32-bit Subtracter 16-bit Multiplier
module mul16(i0,i1,prod);
input [15:0] i0,i1;
output [31:0] prod;

// this is a magnitude multiplier
// signed arithmetic later
assign prod = i0 * i1;

endmodule

module mux32two(i0,i1,sel,out);
input [31:0] i0,i1;
input sel;
output [31:0] out;

assign out = sel ? i1 : i0;

endmodule

module mux32three(i0,i1,i2,sel,out);
input [31:0] i0,i1,i2;
input [1:0] sel;
output [31:0] out;
reg [31:0] out;

always @ (i0 or i1 or i2 or sel)
begin

case (sel)
2’b00: out = i0;
2’b01: out = i1;
2’b10: out = i2;
default: out = 32’bx;

endcase
end
endmodule

module add32(i0,i1,sum);
input [31:0] i0,i1;
output [31:0] sum;

assign sum = i0 + i1;

endmodule

module sub32(i0,i1,diff);
input [31:0] i0,i1;
output [31:0] diff;

assign diff = i0 - i1;

endmodule

L3: 6.111 Spring 2006 25Introductory Digital Systems Laboratory

TopTop--Level ALU DeclarationLevel ALU Declaration

Given submodules:

Declaration of the ALU Module:

module mux32two(i0,i1,sel,out);

module mux32three(i0,i1,i2,sel,out);

module add32(i0,i1,sum);

module sub32(i0,i1,diff);

module mul16(i0,i1,prod);

module alu(a, b, f, r);

input [31:0] a, b;
input [2:0] f;
output [31:0] r;

wire [31:0] addmux_out, submux_out;
wire [31:0] add_out, sub_out, mul_out;

mux32two adder_mux(b, 32'd1, f[0], addmux_out);
mux32two sub_mux(b, 32'd1, f[0], submux_out);
add32 our_adder(a, addmux_out, add_out);
sub32 our_subtracter(a, submux_out, sub_out);

mul16 our_multiplier(a[15:0], b[15:0], mul_out);
mux32three output_mux(add_out, sub_out, mul_out, f[2:1], r);

endmodule

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

module
names

(unique)
instance
names

corresponding
wires/regs in
module alu

intermediate output nodes

alu

L3: 6.111 Spring 2006 26Introductory Digital Systems Laboratory

ModelSimModelSim OutputOutput

addition subtraction multiplication

ModelSim used for behavior level simulation (pre-synthesis) – no timing
information
ModelSim can be run as a stand alone tool or from Xilinx ISE which allows
simulation at different levels including Behavioral and Post-Place-and-
Route

Courtesy of Frank Honore and D. Milliner. Used with permission.

L3: 6.111 Spring 2006 27Introductory Digital Systems Laboratory

More on Module InterconnectionMore on Module Interconnection

Explicit port naming allows port mappings in arbitrary
order: better scaling for large, evolving designs

Built-in Verilog gate primitives may be instantiated as well
Instantiations may omit instance name and must be ordered:

and(out, in1,in2,...inN);

module mux32three(i0,i1,i2,sel,out);

mux32three output_mux(add_out, sub_out, mul_out, f[2:1], r);

mux32three output_mux(.sel(f[2:1]), .out(r), .i0(add_out),

.i1(sub_out), .i2(mul_out));

Given Submodule Declaration:

Module Instantiation with Ordered Ports:

Module Instantiation with Named Ports:

submodule’s
port name

corresponding
wire/reg in

outer module

L3: 6.111 Spring 2006 28Introductory Digital Systems Laboratory

Useful Boolean OperatorsUseful Boolean Operators

Bitwise operators perform bit-sliced operations on vectors
~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
4’b0101 & 4’b0011 = 4’b0001

Logical operators return one-bit (true/false) results
!(4’b0101) = ~1 = 1’b0

Reduction operators act on each bit of a single input vector
&(4’b0101) = 0 & 1 & 0 & 1 = 1’b0

Comparison operators perform a Boolean test on two arguments

~a NOT
a & b AND
a | b OR
a ^ b XOR

a ~^ b XNOR

Bitwise Logical
!a NOT

a && b AND
a || b OR

&a AND
~& NAND
| OR

~| NOR
^ XOR

Reduction
a < b
a > b

a <= b
a >= b

Relational

a == b
a != b

[in]equality
returns x when x
or z in bits. Else

returns 0 or 1

a === b
a !== b

case
[in]equality
returns 0 or 1

based on bit by bit
comparison

Comparison

Note distinction between ~a and !a

L3: 6.111 Spring 2006 30Introductory Digital Systems Laboratory

SummarySummary

Multiple levels of description: behavior, dataflow, logic and
switch (not used in 6.111)
Gate level is typically not used as it requires working out
the interconnects
Continuous assignment using assign allows specifying
dataflow structures
Procedural Assignment using always allows efficient
behavioral description. Must carefully specify the
sensitivity list
Incomplete specification of case or if statements can
result in non-combinational logic
Verilog registers (reg) is not to be confused with a
hardware memory element
Modular design approach to manage complexity

	Lecture 3
	Agenda
	Building Digital Systems
	Building Digital Systems with HDLs
	Verilog and VHDL
	Synthesis and HDLs
	Levels of Modeling in Verilog
	Verilog HDL
	Verilog - The Module
	Continous Assignment
	Gate Level Description
	Procedural Assignemt with Always
	Verilog Registers
	Mix and Match Assignments
	The case Statement
	Power of Verilog - n-bit Signals
	Power of Verilog - Integer Arithmetic
	Dangers of Verilog - Incomplete Specification
	Incomplete Specification Infers Latches
	Avoiding Incomplete Specification
	Dangers of Verilog- Priority Logic
	Priority Logic
	Avoiding (Unintended) Priority Logic
	Interconnecting Modules
	Module Definitions
	Top-Level ALU Declaration
	Simulator Output
	More on Module Interconnection
	Useful Boolean Operators
	Summary

