Microcontrollers
Class 2: "Analog” 1/0

March 14, 2011

Outline

Review

Analog Out

Analog In

Outline

Outline

Review

Demo Code

Outline

Analog Out

Pulse-Width Modulation

Faking Analog

| 2

vV v v Vv

PWM

source signals

PWM signal

As we've seen, the output pins on the AVR put out Ov or bv,
depending on the values stored in the PORTx registers

That's great for turning stuff on and off, but what about all
the voltages in-between?

We fake it by turning the pin on and off quickly
period (or frequency): how long PWM pattern takes to repeat
duty cycle: the percentage of the period is spent on

Since our pin spends dutycycle% of the time at 5v and
(1 — dutycycle)% at Ov,
the average voltage (over one period) is 5v * dutycycle

AT

L I SR T O T T D

o pH-Ho ol bl b

Time

Example With LEDs

pwmDemo.c

>

>
>
>
>
>
>

We want LED on for x% of the time:

Count 0 to 255, with a slight delay

Turn light on at 0

Turn light off at 255 * x%

Repeat.

Want different brightnesses? Use different x.

Bonus code: using array to store 8 brightness levels. Snazzy!

"Analog” or Analog?

A Bit More Detail

>

| 2

So we're not really outputting analog,
just a very fast series of digital data

With the LED example, our persistance of vision smooths it
out for us

PWM works for most other lights, motors, and even audio
waveforms if the PWM period is short enough

But there's a tradeoff: the PWM period divided by the
shortest on/off time limits how much resolution you can
acheive

Also the issue of all those jaggy little step functions
Simple RC filter can help a lot

RC Filter Example:

» wwl.microchip.com/downloads/en/AppNotes/00538c.pdf

FIGURE 4: RC FILTER CONNECTED TO
PWM1 OF PIC17C42

+10V
PWM1 OPAMP
+— Analog
R C out
I 10V

PIC17C42

Choosing, the -3 dB point at 4 kHz, and using the
relation RC = 1/(2 » mef), we get R = 4 k&), if C is chosen

as 0.01 uF;
R = 40kQ
C = 0.01pF

Digital-to-Analog Conversion

Get "real” analog by using a DAC

» If PWM isn't working for you: period too long, filtering
bothersome, or insufficient bit depth...

» DAC: you give it a digital input, it spits out a given (analog)
voltage value

» Specified by frequency and bit-depth
» Some take the digital input as serial data, some parallel

» B/c of digital audio market, there are tons of 44kHz 16-bit
DACs out there

» There are many that are even faster!
» Here's one of my favorites that you can DIY: the R-2R DAC

R-2R DAC

2R

Outline

Analog In

2R

Analog-to-Digital Conversion

Theory and Hardware

» ADC: Take an analog input voltage,
determine its closest digital value

» Chip has dedicated ADC hardware that compares voltages

» ADC reference voltage (AREF) is the maximum value it can
read

Start at 1/2 AREF, see if the signal is higher or lower
Then create either 1/4 or 3/4 AREF, compare again...

Successive-approximation DAC

vV v v Vv

The answers to the comparison questions are the voltage,
in binary

ADC Hardware

Figure 23-1. Analog to Digital Converter Block Schematic Operation,

ADC COMVERSION
COMPLETEIRQ

8-BIT DATA BUS -
220

} L EE B .

ADC MULTIPLEXER ADCCTRL. & STATUS ADG DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)

.;‘ 3‘ A
QJ g2 s

| CONVERSION LOGIC ‘

v
.
INTERNAL 1.1V
| COMPARATOR

AREF 10-BIT DAC
A '
SENSOR
]
BANDGAP
REFERENGE
e
weuT ADC MULTIFLEXER
ADCE X oUTPUT
]
]
]
]
|

Pl

FE
LI

22| 2
Yy v
MUX DECODER
§ hd L3

&

J

Pinouts

Ny
(PCINT14/RESET) PC6] 1 28 [1 PCS5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO]2 27 |1 PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1] 3 26 |1 PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2] 4 251 PC2 (ADC2/PCINT10)
(PCINT19/0C2B/INT1) PD3 | 5 24[1PC1 (ADC1/PCINT9)
(PCINT20/XCK/TO) PD4] 6 23 [1 PCO (ADCO/PCINTS)
vcCc 7 22 [1GND
GND |8 21 [J AREF
(PCINT6/XTAL1/TOSC1) PB6 |9 20 [J AVCC
(PCINT7/XTAL2/TOSC2) PB7 [] 10 19 [PB5 (SCK/PCINTS5)
(PCINT21/0C0B/T1) PD5] 11 18 [PB4 (MISO/PCINT4)
(PCINT22/OCO0OA/AINO) PD6 [] 12 17 [PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7 (] 13 16 [PB2 (SS/OC1B/PCINT2)
(PCINTO/CLKO/ICP1) PBO] 14 15[PB1 (OC1A/PCINT1)

Using the AVR’'s ADC

It's All in the Configuration (p. 263)

» Two modes: sample-on-demand and free-running

» Unless timing is sensitive or you need low power operation,
| use free-running mode

» Free-running mode: chip just keeps on sampling the ADC,
writing the value in the ADCL and ADCH data registers

» Chip uses a 10-bit ADC,
so need to write the 10 bits into two registers

» | usually just use 8 bits worth of ADC,
shift the bits left (ADLAR = 1) and read out of ADCH

» Multiplexer: need to point it at the channel you're interested
in reading (MUXn bits in ADMUX)

» Turn off the digital inputs on your ADC pins

Light Sensor Example

Wire it up!

| 2

Cadmium Sulfide (CdS) light-dependent resistor gets less
resistive in the light

Using another resistor, we can create a voltage divider that
depends on the light in the room

| use a variable resistor (potentiometer) as the second one to
allow us to adjust the sensitivity of our light meter

Hook up one end of the CdS cell to VCC, and the other to
PCO

Hook up PCO to one end of the variable resistor

Hook up the wiper (middle) of the variable resistor to GND

The End

	
	Review
	Analog Out
	Analog In

