
Microcontrollers
Class 2: ”Analog” I/O

March 14, 2011

Outline

Review

Analog Out

Analog In



Outline

Review

Analog Out

Analog In

Outline

Review

Analog Out

Analog In



Demo Code

Outline

Review

Analog Out

Analog In



Pulse-Width Modulation

Faking Analog

I As we’ve seen, the output pins on the AVR put out 0v or 5v,
depending on the values stored in the PORTx registers

I That’s great for turning stuff on and off, but what about all
the voltages in-between?

I We fake it by turning the pin on and off quickly

I period (or frequency): how long PWM pattern takes to repeat

I duty cycle: the percentage of the period is spent on

I Since our pin spends dutycycle% of the time at 5v and
(1 − dutycycle)% at 0v,
the average voltage (over one period) is 5v ∗ dutycycle

PWM



Example With LEDs

pwmDemo.c

I We want LED on for x% of the time:

I Count 0 to 255, with a slight delay

I Turn light on at 0

I Turn light off at 255 ∗ x%

I Repeat.

I Want different brightnesses? Use different x .

I Bonus code: using array to store 8 brightness levels. Snazzy!

”Analog” or Analog?

A Bit More Detail

I So we’re not really outputting analog,
just a very fast series of digital data

I With the LED example, our persistance of vision smooths it
out for us

I PWM works for most other lights, motors, and even audio
waveforms if the PWM period is short enough

I But there’s a tradeoff: the PWM period divided by the
shortest on/off time limits how much resolution you can
acheive

I Also the issue of all those jaggy little step functions
Simple RC filter can help a lot



RC Filter Example:

I ww1.microchip.com/downloads/en/AppNotes/00538c.pdf

Digital-to-Analog Conversion

Get ”real” analog by using a DAC

I If PWM isn’t working for you: period too long, filtering
bothersome, or insufficient bit depth...

I DAC: you give it a digital input, it spits out a given (analog)
voltage value

I Specified by frequency and bit-depth

I Some take the digital input as serial data, some parallel

I B/c of digital audio market, there are tons of 44kHz 16-bit
DACs out there

I There are many that are even faster!

I Here’s one of my favorites that you can DIY: the R-2R DAC



R-2R DAC

Outline

Review

Analog Out

Analog In



Analog-to-Digital Conversion

Theory and Hardware

I ADC: Take an analog input voltage,
determine its closest digital value

I Chip has dedicated ADC hardware that compares voltages

I ADC reference voltage (AREF) is the maximum value it can
read

I Start at 1/2 AREF, see if the signal is higher or lower

I Then create either 1/4 or 3/4 AREF, compare again...

I Successive-approximation DAC

I The answers to the comparison questions are the voltage,
in binary

ADC Hardware



Pinouts

Using the AVR’s ADC

It’s All in the Configuration (p. 263)

I Two modes: sample-on-demand and free-running

I Unless timing is sensitive or you need low power operation,
I use free-running mode

I Free-running mode: chip just keeps on sampling the ADC,
writing the value in the ADCL and ADCH data registers

I Chip uses a 10-bit ADC,
so need to write the 10 bits into two registers

I I usually just use 8 bits worth of ADC,
shift the bits left (ADLAR = 1) and read out of ADCH

I Multiplexer: need to point it at the channel you’re interested
in reading (MUXn bits in ADMUX)

I Turn off the digital inputs on your ADC pins



Light Sensor Example

Wire it up!

I Cadmium Sulfide (CdS) light-dependent resistor gets less
resistive in the light

I Using another resistor, we can create a voltage divider that
depends on the light in the room

I I use a variable resistor (potentiometer) as the second one to
allow us to adjust the sensitivity of our light meter

I Hook up one end of the CdS cell to VCC, and the other to
PC0

I Hook up PC0 to one end of the variable resistor

I Hook up the wiper (middle) of the variable resistor to GND

The End

Outline


	
	Review
	Analog Out
	Analog In

