
Stochastic Search and 
Neural Networks

Natural language and ARtificial intelligence Group



Problem Spaces

• Feature is a single point of data

• Feature vector is a collection of points of 
data (all relating to different things)

• Problem space is the space that spans all 
possible combinations of features



Problem Space Example

• We have height, weight, eye color and 
gender

• Each item in the list above is a feature

• A sample feature vector would be:
[6’3”, 140lbs, blue, male]

• Problem space is the combination of all 
feature vectors (all heights, eye colors, etc.)



Fitness Landscape

• Also known as “Error Spaces”

• Adds error vector/point to the problem 
space

• Fitness landscape is the set of all feature 
vectors and error vectors



Fitness Landscape 
Example 

• Last time out PSO was looking for the 
vector [5, 8] in the set of all real numbers

• Time to show the problem space and the 
fitness landscape



Optimization Problems

• AI can be defined as an optimization where 
the user want’s to minimize error

• Two main types stochastic and gradient 
search

• Gradient follows the shape of the fitness 
landscape

• Stochastic wanders throughout the 
problem space



Grapher Time



Problem Space Search



Fitness Landscape 
Search



PSO Overview

• Initialize the particles

• Set starting location, velocity and fitness

• While stop criteria hasn’t been met

• Check each particles fitness saving the 
best ever and the best at this time

• Flock particles toward the best at this 
time and the best ever



PSO Runtime

function run_pso (param, fitness_func)

    local particles = init_particles(num, dim, random)

    local pbest = particles[1]
    local gbest = particles[1]

    while iterations > 0 and pbest.f > success do
        pbest, gbest = calc_fitness(particles, fitness_func, pbest)
        update_particles(particles, pbest, gbest, pphi, gphi)
        print_particles(particles)
        iterations = iterations - 1
    end

    return pbest
end



PSO Updates

function update_position (particle)
    local position = {}
    for i=1, getn(particle.p) do
        tinsert(position, particle.p[i] + particle.v[i])
    end
    return position
end

function update_velocity (particle, pbest, gbest, pphi, gphi)
    local velocity = {}
    for i=1, getn(particle.v) do
        local prand = pphi*random()
        local grand = gphi*random()
        local pdiff = pbest.p[i] - particle.p[i]
        local gdiff = gbest.p[i] - particle.p[i]
        local vel = particle.v[i] + (prand * pdiff) + (grand * gdiff)
        tinsert(velocity, vel)
    end
    return velocity
end



Perceptrons

f(x)

X1
X2
X3
X4
X5

Output

W1

W2

W3

W4

W5



Neural Networks

• Networks of perceptrons or nodes

• Known for pattern matching abilities

• Applied to a wide variety of problems

• Eventually taken over by Kernel Methods

• Originally developed in the 40’s



Neural Networks

• Category of AI techniques

• Describes a data structure more than an 
algorithm

• Can be trained in a number of ways:

• Particle Swarm Optimizers

• Backpropagation

• Genetic Algorithms



Neural Networks

• Consist of a couple of directed graphs

• A graph describing the topology 
(with or without cycles)

• A graph describing the weights

• And a couple of arrays

• Node outputs

• Inputs from problem



Neural Networks
{
 topology = {
  {0,0,0,1,1,0,0,0,0},
  {0,0,0,1,1,0,0,0,0},
  {0,0,0,1,1,0,0,0,0},
  {0,0,0,0,0,1,1,1,1},
  {0,0,0,0,0,1,1,1,1},
  {0,0,0,0,0,0,0,0,0},
  {0,0,0,0,0,0,0,0,0},
  {0,0,0,0,0,0,0,0,0},
  {0,0,0,0,0,0,0,0,0},
 },
 weights = {
  {-71.74,-115.30,160.06,-545.12,-609.04,226.24,-123.90,-44.55,59.67},
  {-28.71,56.79,4.64,-241.84,36.33,2.90,22.42,963.65,-243.77},
  {34.48,-23.07,18.73,5.06,-49.50,20.98,-672.58,-32.82,-210.05},
  {204.72,126.70,68.57,95.91,232.92,290.05,-47.89,-33.47,-243.83},
  {97.01,27.22,-10.15,-40.74,77.39,-1.12,50.06,-36.96,-36.25},
  {99.34,19.34,-49.66,207.24,-27.07,-68.55,-88.64,67.78,-60.34},
  {-49.95,88.91,174.00,17.13,179.01,-24.76,-62.09,51.42,-642.90},
  {161.85,-38.85,13.80,-111.31,88.18,106.61,77.94,-125.00,-18.63},
  {-38.83,41.05,126.66,81.32,-13.21,330.66,157.38,-58.26,232.19},
 },
 inputs = 3,
 outputs = 4,
 node_outputs = {0,0,0,0,0,0,0,0,0}
}



NN Initialization
function init_neuralnet (topology, inputs, outputs)
    local neuralnet = {}
    neuralnet.topology = topology
    neuralnet.weights = init_weights(getn(topology))
    neuralnet.inputs = inputs
    neuralnet.outputs = outputs
    neuralnet.node_outputs = init_node_outputs(getn(topology))
    return neuralnet
end

function init_node_outputs(nodes)
    local outputs = {}
    for i=1, nodes do
        tinsert(outputs, 0)
    end
    return outputs
end

function init_weights(nodes)
    local weights = {}
    for i=1, nodes do
        local row = {}
        for j=1, nodes do
            tinsert(row, 1)
        end
        tinsert(weights, row)
    end
    return weights
end



NN Run (Chunk 1)

function run_net(net, inputs)
    -- set the proper inputs in the node outputs.
    -- i.e. artificially fire the input nodes based
    -- on input given.
    for i=1, getn(inputs) do
        if inputs[i] == 1 then
            net.node_outputs[i] = 1
        else
            net.node_outputs[i] = 0
        end
    end



NN Run (Chunk 2)
    -- Fire all the nodes (in a naive feed forward fashion)
    -- NOTE: Fix this later for recurrent neural networks.
    -- NOTE: Naive means slow as balls.
    for i=net.inputs+1, getn(net.topology) do
        local action_potential = 0
        for j=1, getn(net.topology) do
            if i ~= j then -- Beware there be hack-dragons in this code
                action_potential = action_potential +
                    (net.topology[j][i] *
                    net.weights[j][i] *
                    net.node_outputs[j])
            end
        end
        if action_potential >= .95 then
            net.node_outputs[i] = 1
        else
            net.node_outputs[i] = 0
        end
    end



NN Run (Chunk 3)

    -- Gather the outputs from the output nodes.
    local output = {}
    -- For loops are clumsy in Lua, since there is no test statement
    -- and defaults to testing for equality I need to add the 1 to get
    -- the proper amount of outputs.
    for i=getn(net.node_outputs), getn(net.node_outputs)-net.outputs+1, -1 do
        tinsert(output, net.node_outputs[i])
    end

    return output
end



PSO Neural Nets

• PSO’s optimize some fitness function over a 
vector

• Lets make the fitness function construct a 
weight graph out of the particle’s position 
vector and stuff it in a neural net

• Then we can run test cases on the net and 
see how bad it does



NN Training Task

• Given a binary number output 0-4 output a 
decimal number (or representation thereof)

4 = 1 0 0 
3 = 0 1 1 
2 = 0 1 0 
1 = 0 0 1 
0 = 0 0 0 

1 0 0 0 = 4
0 1 0 0 = 3
0 0 1 0 = 2
0 0 0 1 = 1
0 0 0 0 = 0



Neural Net Topology



Fitness Function

• Create a Neural Net using weights defined 
by the current particle’s position

• For each test case check the hamming 
distance from expected to actual

• Return the average hamming distance



Fitness Function 
(Chunk 1)

function fitness_func (particle)
    local topology = {
        {0, 0, 0, 1, 1, 0, 0, 0, 0},
        {0, 0, 0, 1, 1, 0, 0, 0, 0},
        {0, 0, 0, 1, 1, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 1, 1, 1, 1},
        {0, 0, 0, 0, 0, 1, 1, 1, 1},
        {0, 0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0, 0}
    }



Fitness Function 
(Chunk 2)

    local test_inputs = {
        {0, 0, 0},
        {0, 0, 1},
        {0, 1, 0},
        {0, 1, 1},
        {1, 0, 0},
    }

    local test_outputs = {
        {0, 0, 0, 0},
        {0, 0, 0, 1},
        {0, 0, 1, 0},
        {0, 1, 0, 0},
        {1, 0, 0, 0}
    }



Fitness Function 
(Chunk 3)

    local nn = make_net_from_pso(topology, particle)

    local err = 0
    for i=1, getn(test_inputs) do
        local output = run_net(nn, test_inputs[i])
        for j=1, getn(output) do
            if output[j] ~= test_outputs[i][j] then
                err = err + 1
            end
        end
        reset_outputs(nn)
    end
    return err/getn(test_inputs)
end



Lets see the code



Fitness over Iterations



Fitness over Less Time



Off The Cuff

• Supervised versus unsupervised learning

• Generalizability of results and some tricks

• Simulation versus the physical world

• Data versus smarts


