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Interrupts

What are they?

I Functions that get called (automatically) when a certain
condition is true (Interrupt Service Routines)

I Pin-change (external) interrupts, data-ready interrupts,
timer-driven interrupts

I See p. 59 of the datasheet, and read iomx8.h for their names

What are they good for?

I Respond to external stimulus in real-time: user pressed
button? new serial data came in? robot sensed a wall ahead?

I Clean up our code: event-driven programming

Polling

Life before Interrupts

I Wanted to see if a button was pressed, we checked the
button state every time we went around the main loop.
Works great if main loop is faster than our response time.

I OTOH, our receiveByte() command was ”blocking” –
it just sat there and waited for data to come in.

I uint8 t receiveByte (void) {
while (!(UCSR0A & BV(RXC0)));/*Wait for data*/

return UDR0; /* return register value */

}
I What does the chip do if no serial data ever comes in?

I Wouldn’t it be nice if we could do other stuff and then be
interrupted when the receive-data register is full?



Event-Driven Programming

Brought to you by interrupts...

I Main loop: Does whatever it does, loops forever

I Interrupts handle the (infrequent) events, and then flow
returns back to the main loop

I Further interrupts disabled while in ISR

I Interrupt requests are queued and there’s a priority system, so
if two other interrupts fire while you’re in an ISR, it’ll do the
highest-priority one as soon as your ISR is finished.

I (You can enable other interrupts from within your ISR with
sei() if you want them to be pre-emptable.)

I Eventually control returns to the main loop and continues

I How long does a cycle of the main loop take?

Event-Driven Programming

Two styles: lightweight or heavyweight ISRs

I Heavyweight version: When you press the button, the
interrupt function writes out data to the serial line

I Lightweight version: Interrupt function sets a flag and returns.
Main loop tests for this flag and handles the rest of the
function if needed.

I Heavyweight is easier to code, immediate handling, but the
ISRs block further interrupts – don’t want to spend too much
time here

I Lightweight spends less time in the interrupt routine, easier to
handle prioritizing in mainloop, but the event doesn’t run until
you’re back in the mainloop. May require global variables.
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External Interrupts

Examples

I External interrupts are useful for syncronizing your chip’s
execution with the outside world

I For instance, I have an accelerometer that grounds a pin for
1ms every 10ms when it has a new data sample. Otherwise,
it’s connected to a pullup.

I One option is to poll that pin with the AVR, but it could miss
it, or get out of sync, or....

I Better is have the hardware watch that pin and throw an
interrupt when the pin is pulled low.

I In the next two examples, we’ll use button presses, but keep in
mind that the trigger could be any external action



External Interrupts

Code Example: Heavyweight

I Send light level over serial when press button

I Heavyweight: do ADC sampling and all within the ISR

I By default, interrupt is configured to trigger when the pin is
low

I While holding low, ISR continues to run –
stuck in ISR as long as hold down button

I Advantage: button-press is attended to exactly as it happens

I Disadvantage: spends a lot of time in the ISR – other
interrupts will have to wait

External Interrupts

Code Example: Lightweight

I ISR just changes a variable to let the mainloop know

I Notice that variable is defined outside of the main loop so that
the ISR (which is also outside the main loop) can access it

I Configure interrupt to fire only on falling-edge pin change

I If configured for low state as above, the ISR would continually
re-write our variable’s value, but only transmit data once
you’ve let go of the button

I Advantage: easy to write debouncing, action handled in the
normal mainloop, ISR doesn’t block other interrupts

I Disadvantage: response is not instantaneous



External Interrupts

Summary

I Lightweight or heavyweight, here’s what you need to do to
use INT0 and INT1

I Enable the specific interrupt: EIMSK |= BV(INT0);

I Make sure it’s triggering on the right event:
low, change, rising, falling

I Globally enable interrupts: sei();

I Write your ISRs (double-check the interrupt vector name!)

External Interrupts

Misc Points

I You can use the light/heavy model to prioritize interrupts:
heavies happen immediately and pre-empt, lights happen in
the mainloop

I Can set INT0, INT1 interrupts for rising, falling, toggle, or
low state triggers

I The interrupt pins can still be used as output –
can set an interrupt pin high in software to fire interrupts

I Debouncing becomes easier with timers, next class

Other Examples

I Many peripherals use external interrupts to signal when
they’ve got data ready (GPS, accelerometer, SD cards, ...)

I IRQs on Compy386!



Pinouts

Pin-Change Interrupts

Interrupts on the Other Pins

I PD2 (our button pin) is special: INT0

I All the other pins have ”pin-change interrupts” associated
with them (p. 70)

I Pin change interrupts only tell you that a pin you’re
monitoring has changed state,
you have to handle the rest of the logic in code

I Pin change interrupts are grouped in sets of eight:
(PBn, PCn, PDn)

I You have to select which port you’re interested in,
then set a mask for which particular pins

I See datasheet, p. 71 and on



Pin-Change Interrupts

Configuration and Use

I Two-step config example: enable PC interrupt on PB6

I enable PORTB/PC0 interrupt: PCICR |= BV(PCIE0);

I monitor PCINT6 via interrupt: PCMSK0 |= BV(PCINT6);

I PC interrupts fire on any change in the state of
any of the monitored pins

I In your ISR(PCINT0 vect), you need to test which pin raised
the interrupt using normal methods: PINB & BV(PB6)

I Example in pinChangeInterruptDemo.c

Pin-Change Interrupts

Summary

I Unlike the special external interrupts, PC interrupts use
aggregated interrupt vectors

I If any of the monitored pins in PB change state,
the ISR is called

I You have to:
enable the overall PC interrupt
configure the pin mask to select which pins are monitored
handle the remaining logic in your ISR
globally enable interrupts: sei();

I Not bad for managing 23 potential interrupts!

I Troubleshooting: did you get the interrupt vector name right?
Did you sei()?
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Interrupt-driven USART

A Better Serial Reader

I Remember what we did before: blocking serial reads

I What happens if your robot loses serial connection?

I Better: have interrupt deal with incoming serial data

I Heavyweight: read & process the new serial data within the
interrupt

I Lightweight: just store the data, set a flag indicating it needs
processing

I Complications: the lightweight approach needs a buffer –
a place to store the incoming serial data as it arrives



Interrupt-driven USART

Heavyweight Serial Example

I Mainloop transmits alphabet over serial
(just to give it something to do)

I But it’s interrupted every time we type something

I As before, define an ISR() and enable the interrupt call

I The Gotcha: Need to read in the UDR0 (serial data register)
to clear the interrupt flag. Otherwise, it just keeps calling the
interrupt routine. (p. 189)

Interrupt-driven USART

Lightweight Serial Example

I Mainloop transmits alphabet over serial, checks to see if it
should advance LED

I Here the ISR just fills up a buffer with the incoming data

I Buffer lets you handle a bunch of data when you can
(pretend that our mainloop took a while or something)

I Or you could handle it all at once

I For more interesting buffers, google ”FIFO” ”ring” or
”circular buffer”



Interrupt-driven USART

Transmit Version?

I Sure!

I Imagine you were sending short bits of bursty data, too much
for the serial baudrate

I Create an ISR that’s triggered by the USART TX interrupt,
so that every time a transmission is complete, the next begins

I In ISR, check to see if your transmit buffer has entries. If it
does, transmit them and advance the buffer.

I In your mainloop, you just need to put your data into the
buffer – the ISR will take care of sending it along when it can

Interrupt-driven ADC

More of the same thing...

I Without belaboring the point, just like there are USART RX
and USART TX vectors, there is an ADC interrupt vector

I If you want the maximum sample rate from the ADC, this is
the way to get it

I Set up the ADC as before in free-running mode tied to an
internal clock source

I ISR(ADC){ ... } and read in or process your data

I Bam!



Other Hardware Peripheral Interrupts

For later reference

I See p. 59 for list of all interrupt vectors

I See iomx8.h for their macro defines

I Whole bunch of timer-related interrupts – we’ll get to these
next class when we cover the hardware timers

I I2C and SPI data interrupts like USART TX

I EEPROM write complete (it takes time)

I Even RESET works internally using its own interrupt
(you can set this in software by writing low to PC6!)

Homework

Response-time Tester Game

I Start with the LEDs off

I Wait a while then flash the LEDs

I Using a for loop with a delay, start counting elapsed time

I When button pressed (use an interrupt) spit out the elapsed
time over serial

Ghetto Oscope in ”Ten” Lines of Code

I Every time you get a value on the ADC, send it out over serial

I This should be all configuration – your mainloop can be empty

I The rest is code on your computer.



Next Class

Timers!

I We’ve been doing a lot of for loops with delays in them

I Want a hardware-based way to count time or waste time

I Timers and counters!

I It’s even better – the timers can fire off interrupts

The End
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