
Subsumption
Architectures

Natural language and ARtificial intelligence Group

Thursday, March 18, 2010

Reactive Agent Paradigm

• Second winter brought radical shifts in AI

• This paradigm was born from robotics

• The leader of this shift was Rod Brooks

• Introduced Grounding Theory and
Subsumption Architectures

Thursday, March 18, 2010

Grounding Theory

• “[...] to build a system that is intelligent it is
necessary to have its representations
grounded in the physical world.”

• “[...] the world is its own best model.”

• “[...] and must extract all its knowledge from
physical sensors.”

• “[...] complex behavior may be a product of
an extremely complex environment.”

Thursday, March 18, 2010

Traditional
Sense-Plan-Act Loop

Sensors Actuators

Pe
rc

ep
tio

n

M
od

el
in

g

Ta
sk

 E
xe

cu
tio

n

M
ot

or
 C

on
tr

ol

Pl
an

ni
ng

Thursday, March 18, 2010

Subsumption
Architectures

Sensors Actuators

Avoid Objects

Wander

Explore

Build Maps

Etc...

Thursday, March 18, 2010

Subsumption
Architecture Cont.

• Behavior is broken up into many task
oriented behaviors (called modules)

• Modules are hierarchically linked

• Lower level modules can inhibit higher level
modules execution

Thursday, March 18, 2010

Subsumption
Architectures Cont.

Layer 0

Layer 1

Layer 2

Layer 3

Sensors Actuators

Thursday, March 18, 2010

Example Time

• Modules are needed to create the behaviors

• Can be created with classes or functions

class SAModule (object):
 def __init__(self, func):
 self.run = func

Thursday, March 18, 2010

Example Continued

• Functions supplied to modules should follow
some convention for inhibiting behaviors

def sample_func(bot, sense_info):
 """
 Returns true to inhibit any

 higher level functions.
 """
 if sense_info["at_edge"]:
 # Do some stuff
 return True
 else:
 # Do other stuff or just:
 return False

Thursday, March 18, 2010

Example Continued

• Inhibition can be achieved using a simple for
loop that breaks

modules = [level_0, level_1, level_2]

for module in modules:
 if module.run()
 break

Thursday, March 18, 2010

Subsumption in CTF

• Class methods will serve as modules

• __init__ method will create ordering

• Iterate method will execute the architecture

• Uniform sensory-info object is necessary

Thursday, March 18, 2010

Subsumption in CTF

• Initialize the module order

class TeamBrooks (CTFPlayer):
 def __init__(self):
 CTFPlayer.__init__(self)
 self.modules = [self.level0,
 self.level1,
 self.level2]

Thursday, March 18, 2010

Subsumption in CTF

• Define avoid edge behavior

 def level0(self, sensor_info):
 """
 Avoid the edge of the map.
 """
 if sensor_info["at_edge"]:
 self.setSpeed(1)
 self.turnRight()
 return True
 else:
 return False

Thursday, March 18, 2010

Subsumption in CTF

• Define find enemy territory behavior

 def level1(self, sensor_info):
 """
 Head toward the enemy side.
 """
 if sensor_info["on_my_side"]:
 angle = self.getAngle(self.getOtherHomeLocation())
 self.setSpeed(1)
 if angle < 0:
 self.turnLeft()
 else:
 self.turnRight()
 return True
 else:
 return False

Thursday, March 18, 2010

Subsumption in CTF

• Define flag locating behavior

 def level2(self, sensor_info):
 """
 Find the opponents flag.
 """
 flag = sensor_info["opponent_flag"]
 if sensor_info["on_other_side"] and flag:
 angle = self.getAngle(flag.getLocation())
 self.setSpeed(1)
 if angle < 0:
 self.turnLeft()
 else:
 self.turnRight()
 return True
 else:
 return False

Thursday, March 18, 2010

Subsumption in CTF

• Create a sensory-information object

 def make_sensor_object(self):
 """
 Package sensory information into a nice bundle.
 """
 sensor_info = {}
 if self.getMyHomeLocation() == self.getLocation():
 sensor_info["on_other_side"] = False
 sensor_info["on_my_side"] = True
 else:
 sensor_info["on_other_side"] = True
 sensor_info["on_my_side"] = False
 sensor_info["opponent_flag"] =

! ! self.senseOtherFlag() or False
 sensor_info["at_edge"] = self.detectEdge()
 return sensor_info

Thursday, March 18, 2010

Subsumption in CTF

• Run it

 def iterate(self):
 """
 Run the subsumption architecture
 """
 sensor_info = self.make_sensor_object()
 for module in self.modules:
 if module(sensor_info):
 break
 CTFPlayer.iterate(self)

Thursday, March 18, 2010

Lets see it in action!

• 57 lines of actual code

• 72 with comments

• Smart(ish) behaviors

Thursday, March 18, 2010

