

Objects and a bit of Libraries

Review

● Functions
● Common data structures

● Lists
● Tuples
● Dicts

● Input/Output
● Pygame Events
● Questions?

Overview

● Dict examples (whoops!)
● Classes and Objects

● Structs
● Classes
● Objects

● Libraries
● Modules
● Packages

Dict Examples (With Code!)

>>> a = {}

>>> a['test'] = 1

>>> a['b'] = 2

>>> a[18] = 'two'

>>> a

>>> a.items()

>>> a.keys()

>>> a.values()

>>> 'test' in a

>>> 16 in a

>>> b = {'1': 2, 'kitten': 'meow', (1, 3): -1}

Classes

● Classes are a way to store data and functions
that act on that data

● At its most basic a class can act as a bucket
filled with different variables

● At its most complex classes can inherit features
from other classes in really weird ways (we're
gonna skip this)

● We've never heard a good explanation so we'll
go by example

Classes (By Example!)

class Paddle (object):

def __init__(self, x, y, dy, color=(255, 0, 255)):

self.x = x
self.y = y
self.dy = dy
self.color = color
self.width = 20
self.height = 100

def move(self, event):

if event.key == K_UP:
self.y -= self.dy

elif event.key == K_DOWN:
self.y += self.dy

def draw(self, screen):

pygame.draw.rect(screen, self.color, (self.x, self.y,
self.width, self.height))

Classes (By Example!)

>>> paddle1 = Paddle(30, height/2-
50, 5)

>>> paddle2 = Paddle(width – 30,
height/2-50, 5, (255, 255, 0))

>>> paddle1.move(e)

>>> paddle2.move(e)

Libraries (and why you want them)

● Separating class definitions and functions from your code is good

● To create a module just make a python file with your code in it

● Import that file to have access to all functions and classes defined there

● Unless you use the import * thing your functions will be namespaced (you
have to call them with the module name prepended)

>>> import my_module

>>> my_module.test()

Or

>>> from my_module import *

>>> test()

● You've seen this already.

Libraries (continued!)

● Collections of modules can be packaged together in a package!

● You do this by throwing modules in an folder and making an __init__.py file in that folder

● Looks something like this:

● package_name

● __init__.py

● Module1.py

● Module2.py

● subpackage_name

– __init__.py

– Module3.py

– Etc

● Import packages the same way you import modules

● Namespacing behaves similarly to modules just put the package name(s) prior to the
module name

Libraries (One Last Time!)

>>> import package_name

>>> package_name.module1.test()

>>> package_name.subpackage_name.module3.test()

Or

>>> from package_name import *

>>> module1.test()

>>> subpackage_name.module3.test()

Or

>>> from package_name import subpackage_name

>>> module3.test()

Fin

● Let's go over more pong demo code using
classes

● Let's go over some sprites using classes
● Try and package your code into a module
● Try and make classes of your interactive

animations
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

